On a planar equation involving (2, q)-Laplacian with zero mass and Trudinger-Moser nonlinearity

被引:0
|
作者
Cardoso, J. A. [1 ]
de Albuquerque, J. C. [2 ]
Carvalho, J. [3 ]
Figueiredo, G. M. [4 ]
机构
[1] Univ Fed Sergipe, Dept Math, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[3] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[4] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Zero mass case; Weighted Sobolev embedding; Trudinger-Moser inequality; LINEAR ELLIPTIC-EQUATIONS; EXPONENTIAL-GROWTH; POSITIVE SOLUTIONS; WEAK SOLUTIONS; REGULARITY; EXISTENCE; INEQUALITY;
D O I
10.1016/j.nonrwa.2024.104227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study existence of positive solutions to a class of (2, q)-equations in the zero mass case in R-2. We establish a weighted Sobolev embedding and we introduce a new Trudinger-Moser type inequality. Moreover, since we work on a suitable radial Sobolev space, we prove an appropriate version of the well-known Symmetric Criticality Principle by Palais. Finally, we study regularity of solutions applying Moser iteration scheme.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Existence and Asymptotic Behaviour for the 2D-Generalized Quasilinear Schrodinger Equations Involving Trudinger-Moser Nonlinearity and Potentials
    Chen, Jianhua
    Wen, Xi
    Huang, Xianjiu
    Cheng, Bitao
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [22] Finsler Trudinger-Moser inequalities on R~2
    Nguyen Tuan Duy
    Le Long Phi
    Science China(Mathematics), 2022, 65 (09) : 1803 - 1826
  • [23] Concentration-compactness principle of singular Trudinger-Moser inequality involving N-Finsler-Laplacian operator
    Liu, Yanjun
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (11)
  • [24] On solutions for a class of fractional Kirchhoff-type problems with Trudinger-Moser nonlinearity
    de Souza, Manasses
    Severo, Uberlandio B.
    do Rego, Thiago Luiz
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (05)
  • [25] On Trudinger-Moser type inequalities involving Sobolev-Lorentz spaces
    Ruf, Bernhard
    Tarsi, Cristina
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (03) : 369 - 397
  • [26] Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains
    Malchiodi, Andrea
    Martinazzi, Luca
    Thizy, Pierre -Damien
    ADVANCES IN MATHEMATICS, 2024, 442
  • [27] A planar Schrodinger-Newton system with Trudinger-Moser critical growth
    Liu, Zhisu
    Radulescu, Vicentiu D.
    Zhang, Jianjun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [28] A Trudinger-Moser Inequality on a Compact Riemannian Surface Involving Gaussian Curvature
    Yang, Yunyan
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2893 - 2913
  • [29] Critical Points for a Functional Involving Critical Growth of Trudinger-Moser Type
    do O, Joao Marcos
    de Souza, Manasses
    de Medeiros, Everaldo
    Severo, Uberlandio
    POTENTIAL ANALYSIS, 2015, 42 (01) : 229 - 246
  • [30] Existence of solutions to equations of N-Laplacian type with Trudinger-Moser nonlinearities
    de Souza, Manasses
    APPLICABLE ANALYSIS, 2014, 93 (10) : 2111 - 2125