Physics informed neural networks for learning the horizon size in bond-based peridynamic models

被引:0
|
作者
V. Difonzo, Fabio [1 ,2 ]
Lopez, Luciano [3 ]
Pellegrino, Sabrina F. [4 ]
机构
[1] CNR, Ist Applicazioni Calcolo Mauro Picone, Via G Amendola 122-I, I-70126 Bari, Italy
[2] LUM Univ Giuseppe Degennaro, Dept Engn, SS 100 km 18, I-70010 Casamassima, BA, Italy
[3] Univ Studi Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[4] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Via E Orabona 4, I-70125 Bari, Italy
关键词
Physics informed neural network; Bond-based peridynamic theory; Horizon; OPTIMIZATION;
D O I
10.1016/j.cma.2024.117727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper broaches the peridynamic inverse problem of determining the horizon size of the kernel function in a one-dimensional model of a linear microelastic material. We explore different kernel functions, including V-shaped, distributed, and tent kernels. The paper presents numerical experiments using PINNs to learn the horizon parameter for problems in one and two spatial dimensions. The results demonstrate the effectiveness of PINNs in solving the peridynamic inverse problem, even in the presence of challenging kernel functions. We observe and prove a one-sided convergence behavior of the Stochastic Gradient Descent method towards a global minimum of the loss function, suggesting that the true value of the horizon parameter is an unstable equilibrium point for the PINN's gradient flow dynamics.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Learning in sinusoidal spaces with physics-informed neural networks
    Wong J.C.
    Ooi C.C.
    Gupta A.
    Ong Y.S.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 985 - 1000
  • [32] Learning solutions of thermodynamics-based nonlinear constitutive material models using physics-informed neural networks
    Rezaei, Shahed
    Moeineddin, Ahmad
    Harandi, Ali
    COMPUTATIONAL MECHANICS, 2024, 74 (02) : 333 - 366
  • [33] A unified bond-based peridynamic model without limitation of Poisson's ratio
    Guan, Jinwei
    Guo, Li
    APPLIED MATHEMATICAL MODELLING, 2024, 128 : 609 - 629
  • [34] 3-Dimensional Bond-Based Peridynamic Representative Volume Element Homogenization
    Xia, W.
    Oterkus, E.
    Oterkus, S.
    PHYSICAL MESOMECHANICS, 2021, 24 (05) : 541 - 547
  • [35] Bond-based peridynamic modelling of singular and nonsingular crack-tip fields
    Roberto Ballarini
    Vito Diana
    Luigi Biolzi
    Siro Casolo
    Meccanica, 2018, 53 : 3495 - 3515
  • [36] Calibrating Bond-Based Peridynamic Parameters Using a Novel Least Squares Approach
    Prakash N.
    Journal of Peridynamics and Nonlocal Modeling, 2019, 1 (1) : 45 - 55
  • [37] Bond-based peridynamic modelling of singular and nonsingular crack-tip fields
    Ballarini, Roberto
    Diana, Vito
    Biolzi, Luigi
    Casolo, Siro
    MECCANICA, 2018, 53 (14) : 3495 - 3515
  • [38] Physics-informed neural networks as surrogate models of hydrodynamic simulators
    Donnelly, James
    Daneshkhah, Alireza
    Abolfathi, Soroush
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [39] A modified bond-based peridynamic approach for rigid projectile perforation on concrete slabs
    Li, M.
    Wu, H.
    Cheng, Y. H.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2025, 195
  • [40] 3-Dimensional Bond-Based Peridynamic Representative Volume Element Homogenization
    W. Xia
    E. Oterkus
    S. Oterkus
    Physical Mesomechanics, 2021, 24 : 541 - 547