HSIAO Framework in Feature Selection for Hyperspectral Remote Sensing Images Based on Jeffries-Matusita Distance

被引:0
|
作者
Li, Huiying [1 ]
Qi, Ailiang [1 ]
Chen, Huiling [2 ]
Chen, Shengbo [3 ]
Zhao, Dong [4 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130026, Jilin, Peoples R China
[2] Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
[3] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Peoples R China
[4] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130032, Jilin, Peoples R China
关键词
Hyperspectral imaging; Feature extraction; Optimization; Evolutionary computation; Optimization methods; Encoding; Correlation; Deep learning; Image coding; Reliability; Artemisinin optimization (AO); band selection (BS); evolutionary algorithm (EA); hyperspectral image; Jeffries-Matusita (JM) distance; remote sensing; BAND SELECTION; INTELLIGENCE; DESIGN; TESTS;
D O I
10.1109/TGRS.2025.3527138
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing image feature selection enhances the efficiency of further applications by extracting band information. However, it is challenging to optimize and extract the spectral relationship information of the entire hyperspectral image using traditional methods and solidified spectral representation strategies. As a result, band selection (BS) often leads to locally optimal candidate solutions. For instance, when applied to downstream classification tasks, the selected bands typically exhibit issues such as poor information separability, high spectral correlation, and missing information. This article proposes a new HSIAO_BS framework based on Jeffries-Matusita (JM) distance and a evolutionary algorithm (EA) to obtain an excellent subset of bands for hyperspectral remote sensing image feature selection addressing downstream classification tasks. The research problem is modeled as a solution space with effective interspectral relationship representation. The HSIAO_BS framework designs an adaptive band encoding mechanism and a feature relationship representation based on JM distance to construct this space. In addition, the key optimized search method in HSIAO_BS is the improved HSIAO. This EA combines differential crossover (DC) and attenuating mutation strategies to enhance the balance between global exploration and local exploitation capabilities, while also targeting to improve the preference for BS. The reliability, validity, and stability of the HSIAO_BS framework are verified through a series of performance test experiments conducted on three hyperspectral remote sensing image datasets to support downstream classification tasks.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] An approach to feature selection and classification of remote sensing images based on the Bayes rule for minimum cost
    Bruzzone, L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (01): : 429 - 438
  • [32] Subspace Feature Analysis of Local Manifold Learning for Hyperspectral Remote Sensing Images Classification
    Ding, Ling
    Tang, Ping
    Li, Hongyi
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1987 - 1995
  • [33] Novel Distribution Distance Based on Inconsistent Adaptive Region for Change Detection Using Hyperspectral Remote Sensing Images
    Lv, Zhiyong
    Lei, Zhengjie
    Xie, Linfu
    Falco, Nicola
    Shi, Cheng
    You, Zhenzhen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [34] Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion
    Liu J.
    Li Q.-Y.
    Liu Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (06): : 1397 - 1405
  • [35] Supervised Distance-Based Feature Selection for Hyperspectral Target Detection
    Rad, Amir Moeini
    Abkar, Ali Akbar
    Mojaradi, Barat
    REMOTE SENSING, 2019, 11 (17)
  • [36] Hyperspectral Remote Sensing Images Classification Method Based on Learned Dictionary
    Li, Min
    Shen, Jun
    Jiang, Lianjun
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND COMPUTER APPLICATIONS (ICSA 2013), 2013, 92 : 357 - 362
  • [37] Sparsity-Based Clustering for Large Hyperspectral Remote Sensing Images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10410 - 10424
  • [38] Coastline target detection based on UAV hyperspectral remote sensing images
    Zhao, Song
    Lv, Yali
    Zhao, Xiaobin
    Wang, Jiayao
    Li, Wei
    Lv, Ming
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [39] Harbor Detection in Remote Sensing Images Based on Feature Fusion
    Zhao, Huibin
    Li, Weihai
    Yu, Nenghai
    Ao, Huanhuan
    2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 1053 - 1057
  • [40] Research on retrieval of remote sensing images based on shape feature
    Cheng, Qimin
    Zhu, Guangxi
    Shao, Zhenfeng
    GEOINFORMATICS 2006: REMOTELY SENSED DATA AND INFORMATION, 2006, 6419