Multiscale Spatiotemporal Attention Network for Remaining Useful Life Prediction of Mechanical Systems

被引:1
|
作者
Gao, Zhan [1 ]
Jiang, Weixiong [1 ]
Wu, Jun [1 ]
Dai, Tianjiao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal phenomena; Feature extraction; Mechanical systems; Long short term memory; Discrete wavelet transforms; Low-pass filters; Degradation; Convolution; Logic gates; Predictive models; Mechanical system; multiscale subseries; remaining useful life (RUL) prediction; spatiotemporal features;
D O I
10.1109/JSEN.2024.3523176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remaining useful life (RUL) prediction plays a critical role in mechanical systems. RNN-based methods have achieved unprecedented success. However, these methods neglect spatial dependencies among sensors and suffer from long-term dependency learning. To break through these limitations, a novel multiscale spatiotemporal attention network (MSAN) is proposed for predicting the RUL of aircraft engines. In the MSAN, a multiscale discrete wavelet transformation (MDWT) is first constructed to obtain a multiscale subseries set. Then, an adaptive spatiotemporal feature extraction module is proposed to mine both long-term and spatial dependencies and form holistic spatiotemporal features by a collaborative spatiotemporal learning module (CSLM). Finally, a versatile fusion module is developed to integrate holistic spatiotemporal features for RUL prediction. The MSAN is validated on C-MAPSS datasets, and the experimental results demonstrate that the MSAN can better perform prediction tasks than existing state-of-the-art (SOTA) methods.
引用
收藏
页码:6825 / 6835
页数:11
相关论文
共 50 条
  • [31] Temporal convolutional attention network for remaining useful life estimation
    Liu L.
    Pei X.
    Lei X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2375 - 2386
  • [32] Prediction of Remaining Useful Life of Rolling Bearings Based on Multiscale Efficient Channel Attention CNN and Bidirectional GRU
    Ma, Ping
    Li, Guangfu
    Zhang, Hongli
    Wang, Cong
    Li, Xinkai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [33] Pseudo-Label-Vector-Guided Parallel Attention Network for Remaining Useful Life Prediction
    Park, Ye-In
    Song, Jou Won
    Kang, Suk-Ju
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (04) : 5602 - 5611
  • [34] A global attention based gated temporal convolutional network for machine remaining useful life prediction
    Xu, Xinyao
    Zhou, Xiaolei
    Fan, Qiang
    Yan, Hao
    Wang, Fangxiao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 260
  • [35] Tool remaining useful life prediction considering wear state based on hybrid attention network
    Wu, Shihao
    Li, Yang
    Li, Weiguang
    Zhao, Xuezhi
    Zheng, Jiawei
    Chen, Ru
    Yan, Song
    Lin, Shoujin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (6-7) : 837 - 850
  • [36] Bearing Remaining Useful Life Prediction Using 2D Attention Residual Network
    Xiao, Wenrong
    Chen, Yong
    Guo, Suqin
    Chen, Kun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 818 - 820
  • [37] Path Graph Attention Network-based Bearing Remaining Useful Life Prediction Method
    Yang C.
    Liu J.
    Zhou K.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 195 - 201
  • [38] Spatial-Temporal Attention and Information Reinforcement Network for Machine Remaining Useful Life Prediction
    Li, Xuanlin
    Hu, Yawei
    Wang, Hang
    Liu, Yongbin
    Liu, Xianzeng
    Cao, Zheng
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 4068 - 4078
  • [39] Frequency Hoyer attention based convolutional neural network for remaining useful life prediction of machinery
    Huang, Xin
    Zhang, Ping
    Shi, Wenjie
    Dong, Shuzhi
    Wen, Guangrui
    Lin, Hailong
    Chen, Xuefeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [40] Spatial-Temporal Evolutionary Graph Attention Network for Bearing Remaining Useful Life Prediction
    Du, Sirui
    Dong, Feng
    Zhang, Shumei
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1329 - 1334