Friction stir processing of wire arc additively manufactured Al-Zn-Mg-Cu alloy reinforced with high-entropy alloy particles: Microstructure and mechanical properties

被引:0
|
作者
Shan, He [1 ,2 ]
Li, Yang [1 ]
Wang, Shuwen [1 ]
Yuan, Tao [1 ]
Chen, Shujun [1 ]
机构
[1] Beijing Univ Technol, Inst Intelligent Forming Equipment & Syst, Coll Mech & Energy Engn, Beijing 100124, Peoples R China
[2] State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Al-Zn-Mg-Cu alloy; Wire arc additive manufacturing; Friction stir processing; High-entropy alloy; Particle reinforcement; MATRIX COMPOSITES; STEEL; FABRICATION; STRENGTH;
D O I
10.1016/j.jallcom.2025.179476
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wire arc additive manufacturing (WAAM) of Al-Zn-Mg-Cu alloys often leads to poor strength and ductility due to microstructure defects, significantly limiting its application. This study employed friction stir processing (FSP) to reduce porosity and break up continuous coarse second phases along the grain boundaries. By adding high-entropy alloy (HEA) particles with good wettability during FSP, Al-Zn-Mg-Cu alloy components with simultaneously improved strength and ductility were produced. The results indicated that the grain structure transformed from columnar to equiaxed and was refined to 2.3 mu m owing to the dynamic recrystallization of FSP and the particle-stimulated nucleation of HEA particles, while the continuous second phase was fragmented into nanoscale precipitates uniformly distributed in the matrix, acting as dislocation movement barriers. The newly formed Ni3Al precipitates second phases ensure good ductility due to its low lattice mismatch with Al matrix. Additionally, the HEA particles maintained strong interfacial bonding with Al matrix, with an interfacial layer thickness of similar to 400 nm. The FSP-HEA treated components showed increased hardness (151.8 HV), ultimate tensile strength (374.3 +/- 20.4 MPa), and elongation (10.6 % +/- 1.6 %) compared to the WAAM as-deposited state. This study provides guidance for the improvement of microstructural defects and the simultaneous enhancement of the strength and ductility of high-strength Al alloy WAAM components.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement
    Li, Junchen
    Li, Yulong
    Wang, Feifan
    Meng, Xiangchen
    Wan, Long
    Dong, Zhibo
    Huang, Yongxian
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 792 (792):
  • [32] Modified Friction Stir Welding of Al-Zn-Mg-Cu Aluminum Alloy
    Alkhalaf, Ahmad Alali
    Tesleva, Anna
    Polyakov, Pavel
    Moschinger, Matthias
    Fritsche, Sebastian
    Morozova, Iuliia
    Naumov, Anton
    Isupov, Fedor
    Cipriano, Goncalo Pina
    Amancio-Filho, Sergio T.
    FRICTION STIR WELDING AND PROCESSING XI, 2021, : 43 - 51
  • [33] Microstructure and properties research of Al-Zn-Mg-Cu alloy with high strength and high elongation fabricated by wire arc additive manufacturing
    Ren, Xuelei
    Jiang, Xiaoqing
    Yuan, Tao
    Zhao, Xiaohu
    Chen, Shujun
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 307
  • [34] Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al-Zn-Mg-Cu aluminum alloy
    Zhang, Fei
    Su, Xuekuan
    Chen, Ziyong
    Nie, Zuoren
    MATERIALS & DESIGN, 2015, 67 : 483 - 491
  • [35] Investigation on friction stir welding of hybrid composites fabricated on Al-Zn-Mg-Cu alloy through friction stir processing
    Gangil, Namrata
    Maheshwari, Sachin
    Siddiquee, Arshad Noor
    Abidi, Mustufa Haider
    El-Meligy, Mohammed A.
    Mohammed, Jabair Ali
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (05): : 3733 - 3740
  • [36] Formability, microstructure and mechanical properties of nano-treated Al-Zn-Mg-Cu alloy fabricated by wire arc additive manufacturing
    Tian, Rui
    Jiang, Zhe
    Liu, Jun
    Liu, Weiqing
    Chi, Yuanqing
    Zhang, Yongkang
    Hanjie Xuebao/Transactions of the China Welding Institution, 2024, 45 (08): : 110 - 120
  • [37] Investigation the effects of friction stir processing on microstructure and mechanical properties of Al-Cu alloy fabricated by wire arc additive manufacturing
    Liu, Li
    Xu, Wanghui
    Li, Yu
    Liu, Ruizhe
    Liu, Ruiwei
    Huang, Yongxian
    Dong, Chunlin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 34 : 539 - 551
  • [38] Microstructure evolution and mechanical properties of friction stir welded FeCrNiCoMn high-entropy alloy
    Xu, Nan
    Song, Qining
    Bao, Yefeng
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (05) : 577 - 584
  • [39] Severe friction stir processing of an Al-Zn-Mg-Cu alloy: Misorientation and its influence on superplasticity
    Orozco-Caballero, Alberto
    Ruano, Oscar A.
    Rauch, Edgar F.
    Carreno, Fernando
    MATERIALS & DESIGN, 2018, 137 : 128 - 139
  • [40] Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2050 Al–Li Alloy Wall Deposits
    Hao Zhong
    Bojin Qi
    Baoqiang Cong
    Zewu Qi
    Hongye Sun
    Chinese Journal of Mechanical Engineering, 2019, 32