Graphs without a 3-Connected Subgraph are 4-Colourable

被引:0
|
作者
Bonnet, Edouard [1 ]
Feghali, Carl [1 ]
Nguyen, Tung [2 ]
Scott, Alex [3 ]
Seymour, Paul [2 ]
Thomasse, Stephan [1 ]
Trotignon, Nicolas [1 ]
机构
[1] Univ Claude Bernard Lyon 1, CNRS, ENS Lyon, LIP UMR 5668, F-69342 Lyon 07, France
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2025年 / 32卷 / 01期
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
D O I
10.37236/13181
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1972, Mader showed that every graph without a 3-connected subgraph is-degenerate and thus 5-colourable. We show that the number 5 of colours can be replaced by 4, which is best possible.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Longest cycles in 3-connected graphs
    Wei, B
    DISCRETE MATHEMATICS, 1997, 170 (1-3) : 195 - 201
  • [32] Constructing Minimally 3-Connected Graphs
    Costalonga, Joao Paulo
    Kingan, Robert J.
    Kingan, Sandra R.
    ALGORITHMS, 2021, 14 (01)
  • [33] Rainbow Connection in 3-Connected Graphs
    Xueliang Li
    Yongtang Shi
    Graphs and Combinatorics, 2013, 29 : 1471 - 1475
  • [34] CONTRACTILE TRIPLES IN 3-CONNECTED GRAPHS
    MCCUAIG, W
    OTA, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (02) : 308 - 314
  • [35] Spanning 3-connected index of graphs
    Wei Xiong
    Zhao Zhang
    Hong-Jian Lai
    Journal of Combinatorial Optimization, 2014, 27 : 199 - 208
  • [36] Properties of uniformly 3-connected graphs
    Goering, Frank
    Hofmann, Tobias
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (03): : 1 - 14
  • [37] REMOVABLE EDGES IN 3-CONNECTED GRAPHS
    HOLTON, DA
    JACKSON, B
    SAITO, A
    WORMALD, NC
    JOURNAL OF GRAPH THEORY, 1990, 14 (04) : 465 - 473
  • [38] Spanning 3-connected index of graphs
    Xiong, Wei
    Zhang, Zhao
    Lai, Hong-Jian
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 199 - 208
  • [39] On the structure of 3-connected matroids and graphs
    Oxley, J
    Wu, HD
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (05) : 667 - 688
  • [40] ORDER AND RADIUS OF 3-CONNECTED GRAPHS
    Iida, Tatsuya
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (01) : 21 - 49