Slow Propagation Velocities in Schrödinger Operators with Large Periodic Potential

被引:0
|
作者
Abdul-Rahman, Houssam [1 ]
Darras, Mohammed [1 ]
Fischbacher, Christoph [2 ]
Stolz, Gunter [3 ]
机构
[1] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain 15551, U Arab Emirates
[2] Baylor Univ, Dept Math, Sid Richardson Bldg, 1410 S 4th St, Waco, TX 76706 USA
[3] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
来源
关键词
LIEB-ROBINSON BOUNDS; HARMONIC-OSCILLATOR SYSTEMS; MANY-BODY LOCALIZATION; QUANTUM; LATTICE;
D O I
10.1007/s00023-024-01520-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Schr odinger operators with periodic potential have generallybeen shown to exhibit ballistic transport. In this work, we investigatewhether the propagation velocity, while positive, can be made arbitrar-ily small by a suitable choice of the periodic potential. We consider thediscrete one-dimensional Schr odinger operator Delta +mu V, where Delta is thediscrete Laplacian,Vis ap-periodic non-degenerate potential and mu>0.We establish a Lieb-Robinson-type bound with a group velocity thatscales likeO(1/mu)as mu ->infinity. This shows the existence of a linear lightcone with a maximum velocity of quantum propagation that is decayingat a rate proportional to 1/mu. Furthermore, we prove that the asymptoticvelocity, or the average velocity of the time-evolved state, exhibits a decayproportional toO(1/mu p-1)as mu ->infinity
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Limit-periodic Schrödinger operators with uniformly localized eigenfunctions
    David Damanik
    Zheng Gan
    Journal d'Analyse Mathématique, 2011, 115 : 33 - 49
  • [32] Electromagnetic Schrödinger Operators on Periodic Graphs with General Conditions at Vertices
    V. Rabinovich
    Russian Journal of Mathematical Physics, 2019, 26 : 185 - 205
  • [33] The isospectral torus of quasi-periodic Schrödinger operators via periodic approximations
    David Damanik
    Michael Goldstein
    Milivoje Lukic
    Inventiones mathematicae, 2017, 207 : 895 - 980
  • [34] Propagation Properties for Schrödinger Operators Affiliated with Certain C*-Algebras
    W. O. Amrein
    M. Mantoiu
    R. Purice
    Annales Henri Poincaré, 2002, 3 : 1215 - 1232
  • [35] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [36] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [37] Spectral Fluctuations for Schrödinger Operators with a Random Decaying Potential
    Jonathan Breuer
    Yoel Grinshpon
    Moshe J. White
    Annales Henri Poincaré, 2021, 22 : 3763 - 3794
  • [38] On the spectrum of lattice schrödinger operators with deterministic potential (II)
    J. Bourgain
    Journal d’Analyse Mathématique, 2002, 88 : 221 - 254
  • [39] The Spectrum of Schrödinger Operators with Poisson Type Random Potential
    Kazunori Ando
    Akira Iwatsuka
    Masahiro Kaminaga
    Fumihiko Nakano
    Annales Henri Poincaré, 2006, 7 : 145 - 160
  • [40] Exact solutions of the Schrödinger equation with a complex periodic potential
    Shi-Hai Dong
    Guo-Hua Sun
    Journal of Mathematical Chemistry, 2023, 61 : 1684 - 1695