Application of U-Net Network Utilizing Multiattention Gate for MRI Segmentation of Brain Tumors

被引:0
|
作者
Zhang, Qiong [1 ]
Hang, Yiliu [1 ]
Qiu, Jianlin [1 ,2 ]
Chen, Hao [1 ]
机构
[1] Nantong Inst Technol, Coll Comp & Informat Engn, 211 Yongxing Rd, Nantong 226000, Jiangsu, Peoples R China
[2] Nantong Univ, Coll Informat Sci & Technol, Nantong, Peoples R China
关键词
attention gate; UNet network; low-grade glioma; MRI segmentation;
D O I
10.1097/RCT.0000000000001641
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundStudies have shown that the type of low-grade glioma is associated with its shape. The traditional diagnostic method involves extraction of the tumor shape from MRIs and diagnosing the type of glioma based on corresponding relationship between the glioma shape and type. This method is affected by the MRI background, tumor pixel size, and doctors' professional level, leading to misdiagnoses and missed diagnoses. With the help of deep learning algorithms, the shape of a glioma can be automatically segmented, thereby assisting doctors to focus more on the diagnosis of glioma and improving diagnostic efficiency. The segmentation of glioma MRIs using traditional deep learning algorithms exhibits limited accuracy, thereby impeding the effectiveness of assisting doctors in the diagnosis. The primary objective of our research is to facilitate the segmentation of low-grade glioma MRIs for medical practitioners through the utilization of deep learning algorithms.MethodsIn this study, a UNet glioma segmentation network that incorporates multiattention gates was proposed to address this limitation. The UNet-based algorithm in the coding part integrated the attention gate into the hierarchical structure of the network to suppress the features of irrelevant regions and reduce the feature redundancy. In the decoding part, by adding attention gates in the fusion process of low- and high-level features, important feature information was highlighted, model parameters were reduced, and model sensitivity and accuracy were improved.ResultsThe network model performed image segmentation on the glioma MRI dataset, and the accuracy and average intersection ratio (mIoU) of the algorithm segmentation reached 99.7%, 87.3%, 99.7%, and 87.6%.ConclusionsCompared with the UNet, PSPNet, and Attention UNet network models, this network model has obvious advantages in accuracy, mIoU, and loss convergence. It can serve as a standard for assisting doctors in diagnosis.
引用
收藏
页码:991 / 997
页数:7
相关论文
共 50 条
  • [21] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [22] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [23] Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Classification
    Rajaragavi, R.
    Rajan, S. Palanivel
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (01): : 1 - 14
  • [24] Spine MRI image segmentation method based on ASPP and U-Net network
    Cai, Biao
    Xu, Qing
    Yang, Cheng
    Lu, Yi
    Ge, Cheng
    Wang, Zhichao
    Liu, Kai
    Qiu, Xubin
    Chang, Shan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 15999 - 16014
  • [25] SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Sun, Qiule
    Zhang, Qiang
    Wei, Xiaopeng
    Liu, Bin
    CURRENT MEDICAL IMAGING, 2020, 16 (06) : 720 - 728
  • [26] Improved U-NET Semantic Segmentation Network
    Gao, Xueyan
    Fang, Lijin
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7090 - 7095
  • [27] MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation
    Zhao, Changchen
    Zhao, Zhiming
    Zeng, Qingrun
    Feng, Yuanjing
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 93 - 103
  • [28] GT U-Net: A U-Net Like Group Transformer Network for Tooth Root Segmentation
    Li, Yunxiang
    Wang, Shuai
    Wang, Jun
    Zeng, Guodong
    Liu, Wenjun
    Zhang, Qianni
    Jin, Qun
    Wang, Yaqi
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 386 - 395
  • [29] TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI Data
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 300 - 309
  • [30] A Modified U-Net Based Framework for Automated Segmentation of Hippocampus Region in Brain MRI
    Sohail, Nosheen
    Anwar, Syed Muhammad
    IEEE ACCESS, 2022, 10 : 31201 - 31209