Deep Learning on Enhancing Quality Recovery for Lowdose PET Imaging with Auxiliary Multiple Lower-dose Repetitions

被引:0
|
作者
Chen, Y. [1 ]
Guo, R. [2 ,3 ]
Xue, S. [1 ]
Zhang, X. [2 ,3 ]
Sari, H. [1 ,4 ]
Viscone, M. [1 ]
Rominger, A. [1 ]
Li, B. [2 ,3 ]
Shi, K. [1 ]
机构
[1] Univ Bern, Dept Nucl Med, Inselspital, Bern, Switzerland
[2] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Nucl Med, Sch Med, Shanghai, Peoples R China
[3] Shanxi Med Univ, Collaborat Innovat Ctr Mol Imaging Precis Med, Taiyuan, Peoples R China
[4] Siemens Healthineers Int AG, Zurich, Switzerland
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-0887
引用
收藏
页码:S786 / S787
页数:2
相关论文
共 50 条
  • [21] The Effect of Multimodal Anatomical Images in Deep Learning-enhanced Low-dose Amyloid PET Imaging
    Kuo, S.
    Lee, M.
    Ko, C.
    Chen, K. T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S101 - S101
  • [22] Investigating Simultaneity for Deep Learning?Enhanced Actual Ultra-Low-Dose Amyloid PET/MR Imaging
    Chen, K. T.
    Adeyeri, O.
    Toueg, T. N.
    Zeineh, M.
    Mormino, E.
    Khalighi, M.
    Zaharchuk, G.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2022, 43 (03) : 354 - 360
  • [23] Leveraging deep neural networks to improve numerical and perceptual image quality in low-dose preclinical PET imaging
    Amirrashedi, Mahsa
    Sarkar, Saeed
    Mamizadeh, Hojjat
    Ghadiri, Hossein
    Ghafarian, Pardis
    Zaidi, Habib
    Ay, Mohammad Reza
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 94
  • [24] Clinical Potential for Artificial Intelligence in PET Imaging: Phase 1 Result of Dose Reduction using Deep Learning Reconstruction
    Vangu, Mboyo
    Purbhoo, Khushica
    Liu, Hui
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [25] Quantitative Assessment of Deep Learning-enhanced Actual Ultra-low-dose Amyloid PET/MR Imaging
    Chen, Kevin
    Holley, Dawn
    Halbert, Kim
    Toueg, Tyler
    Boumis, Athanasia
    Kennedy, Gabriel
    Mormino, Elizabeth
    Khalighi, Mehdi
    Zaharchuk, Greg
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [26] Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability
    Muller, Florence M.
    Vervenne, Boris
    Maebe, Jens
    Blankemeyer, Eric
    Sellmyer, Mark A.
    Zhou, Rong
    Karp, Joel S.
    Vanhove, Christian
    Vandenberghe, Stefaan
    MOLECULAR IMAGING AND BIOLOGY, 2024, 26 (01) : 101 - 113
  • [27] Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability
    Florence M. Muller
    Boris Vervenne
    Jens Maebe
    Eric Blankemeyer
    Mark A. Sellmyer
    Rong Zhou
    Joel S. Karp
    Christian Vanhove
    Stefaan Vandenberghe
    Molecular Imaging and Biology, 2024, 26 : 101 - 113
  • [28] Automated data quality control in [18F] FDOPA brain PET imaging using deep learning
    Pontoriero, Antonella D.
    Santangelo, Barbara
    Jahuar, Sameer
    Bonoldi, Ilaria
    Rogdaki, Maria
    Turkheimer, Federico E.
    Howes, Oliver D.
    Veronese, Mattia
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (1_SUPPL): : 243 - 243
  • [29] Estimates of the image quality in accordance with radiation dose for pediatric imaging using deep learning CT: A phantom study
    Jeon, Pil-Hyun
    Kim, Daehong
    Chung, Myung-Ae
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 352 - 356
  • [30] High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning
    Sun, Hanyu
    Jiang, Yongluo
    Yuan, Jianmin
    Wang, Haining
    Liang, Dong
    Fan, Wei
    Hu, Zhanli
    Zhang, Na
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, : 5326 - 5342