Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing

被引:0
|
作者
Anjum, Mohd [1 ]
Kraiem, Naoufel [2 ]
Min, Hong [3 ]
Dutta, Ashit Kumar [4 ]
Daradkeh, Yousef Ibrahim [5 ]
机构
[1] Aligarh Muslim Univ, Dept Comp Engn, Aligarh 202002, India
[2] King Khalid Univ, Coll Comp Sci, Abha 61413, Saudi Arabia
[3] Gachon Univ, Sch Comp, Seongnam 13120, South Korea
[4] AlMaarefa Univ, Coll Appl Sci, Dept Comp Sci & Informat Syst, Riyadh 13713, Saudi Arabia
[5] Prince Sattam bin Abdulaziz Univ, Coll Engn Wadi Alddawasir, Dept Comp Engn & Informat, Al Kharj 16273, Saudi Arabia
来源
基金
新加坡国家研究基金会;
关键词
Computer vision; feature selection; machine learning; region detection; texture analysis; image classification; medical images; MODEL;
D O I
10.32604/cmes.2024.057889
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning (ML) is increasingly applied for medical image processing with appropriate learning paradigms. These applications include analyzing images of various organs, such as the brain, lung, eye, etc., to identify specific flaws/diseases for diagnosis. The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification. Most of the extracted image features are irrelevant and lead to an increase in computation time. Therefore, this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features. This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions. The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis. Later, the correlation based on intensity and distribution is analyzed to improve the feature selection congruency. Therefore, the more congruent pixels are sorted in the descending order of the selection, which identifies better regions than the distribution. Now, the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection. Therefore, the probability of feature selection, regardless of the textures and medical image patterns, is improved. This process enhances the performance of ML applications for different medical image processing. The proposed method improves the accuracy, precision, and training rate by 13.19%, 10.69%, and 11.06%, respectively, compared to other models for the selected dataset. The mean error and selection time is also reduced by 12.56% and 13.56%, respectively, compared to the same models and dataset.
引用
收藏
页码:357 / 384
页数:28
相关论文
共 50 条
  • [41] Classification of Soil Bacteria Based on Machine Learning and Image Processing
    Konopka, Aleksandra
    Struniawski, Karol
    Kozera, Ryszard
    Trzcinski, Pawel
    Sas-Paszt, Lidia
    Lisek, Anna
    Gornik, Krzysztof
    Derkowska, Edyta
    Gluszek, Slawomir
    Sumorok, Beata
    Frac, Magdalena
    COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 : 263 - 277
  • [42] Image processing and machine learning based cavings characterization and classification
    Jin, Jian
    Jin, Yan
    Lu, Yunhu
    Pang, Huiwen
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [43] Application of Machine Learning-Based Classification to Genomic Selection and Performance Improvement
    Qiu, Zhixu
    Cheng, Qian
    Song, Jie
    Tang, Yunjia
    Ma, Chuang
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 412 - 421
  • [44] Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis
    Hernandez-Cruz, Netzahualcoyotl
    Saha, Pramit
    Sarker, Md Mostafa Kamal
    Noble, J. Alison
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (09)
  • [45] A Machine Learning-Based Peer Selection Method with Financial Ratios
    Ding, Kexing
    Peng, Xuan
    Wang, Yunsen
    ACCOUNTING HORIZONS, 2019, 33 (03) : 75 - 87
  • [46] An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    Li, Shijin
    Wu, Hao
    Wan, Dingsheng
    Zhu, Jiali
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (01) : 40 - 48
  • [47] Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things
    Raj, R. Joshua Samuel
    Shobana, S. Jeya
    Pustokhina, Irina Valeryevna
    Pustokhin, Denis Alexandrovich
    Gupta, Deepak
    Shankar, K.
    IEEE ACCESS, 2020, 8 : 58006 - 58017
  • [48] Machine learning-based image processing in materials science and engineering: A review
    Pratap, Ayush
    Sardana, Neha
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 7341 - 7347
  • [49] Machine Learning-based Image Processing in Support of Discus Hernia Diagnosis
    Sustersic, Tijana
    Rankovic, Vesna
    Kovacevic, Vojin
    Milovanovic, Vladimir
    Rasulic, Lukas
    Filipovic, Nenad
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [50] Discriminative Dictionary Learning based on Supervised Feature Selection for Image Classification
    Feng, Shaokun
    Lu, Hongtao
    Long, Xianzhong
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 225 - 228