A cooperative lateral and vertical control strategy for autonomous vehicles based on multi-agent deep reinforcement learning

被引:0
|
作者
Liu, Qianjie [1 ,2 ]
Xiong, Peixiang [1 ,2 ]
Zhu, Qingyuan [3 ]
Xiao, Wei [1 ,2 ]
Li, Gang [1 ,2 ]
Hu, Guoliang [1 ,2 ]
机构
[1] East China Jiaotong Univ, Sch Mechatron & Vehicle Engn, Nanchang 330013, Peoples R China
[2] East China Jiaotong Univ, Key Lab Vehicle Intelligent Equipment & Control Na, Nanchang, Peoples R China
[3] Xiamen Univ, Dept Mech & Elect Engn, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous vehicle; reinforcement learning; path following; suspension control; ride comfort; ENVELOPES;
D O I
10.1177/09544070241309518
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With the increasing level of automation in autonomous vehicles, consideration of comfort and stability will further enhance the public acceptance of autonomous driving technology. This paper presents a cooperative lateral and vertical control strategy for autonomous vehicles based on multi-agent deep reinforcement learning, which integrates path tracking and suspension control for different planar learning tasks. By developing the lateral and vertical dynamic models, the multi-objective coordinated exploration of path tracking and active suspension systems is imposed by using the deep deterministic policy gradient (DDPG) algorithm. In the multi-agent deep reinforcement learning, a feedforward steering of steering subsystem and a PID compensation control of suspension subsystem are added to the DDPG control process for efficiently searching the strategic action of the coupling system. Furthermore, the learning reward function of autonomous vehicle is designed by comprehensively considering the accuracy, safety and comfort performance. Through the trained learning process and simulation results under different driving conditions, the proposed method can achieve the simultaneous optimization of path tracking and suspension comfort performance, and effectively improve the ride comfort and stability in the high-performance path tracking process. This study provides an efficient control scheme for improving the ride comfort of autonomous vehicles.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control
    Peake, Ashley
    McCalmon, Joe
    Raiford, Benjamin
    Liu, Tongtong
    Alqahtani, Sarra
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 15 - 22
  • [42] Virtual Machine Migration Strategy Based on Multi-Agent Deep Reinforcement Learning
    Dai, Yu
    Zhang, Qiuhong
    Yang, Lei
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [43] Multi-agent deep reinforcement learning strategy for distributed energy
    Xi, Lei
    Sun, Mengmeng
    Zhou, Huan
    Xu, Yanchun
    Wu, Junnan
    Li, Yanying
    MEASUREMENT, 2021, 185
  • [44] Edge server deployment strategy based on multi-agent reinforcement learning in the internet of vehicles
    Li, Chuang
    Ji, Jianqiao
    Hu, Zhigang
    Zhou, Zhou
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2024, 55 (07): : 2567 - 2577
  • [45] Cooperative countermeasure strategy based on active risk defense multi-agent reinforcement learning
    Sun H.-H.
    Hu C.-H.
    Zhang J.-G.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (05): : 1420 - 1429
  • [46] Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning
    Jiawei Xia
    Yasong Luo
    Zhikun Liu
    Yalun Zhang
    Haoran Shi
    Zhong Liu
    Defence Technology, 2023, 29 (11) : 80 - 94
  • [47] Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning
    Xia, Jiawei
    Luo, Yasong
    Liu, Zhikun
    Zhang, Yalun
    Shi, Haoran
    Liu, Zhong
    DEFENCE TECHNOLOGY, 2023, 29 : 80 - 94
  • [48] Multi-Agent Connected Autonomous Driving using Deep Reinforcement Learning
    Palanisamy, Praveen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [49] Survey of Multi-Agent Strategy Based on Reinforcement Learning
    Chen, Liang
    Guo, Ting
    Liu, Yun-ting
    Yang, Jia-ming
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 604 - 609
  • [50] Deep Multi-Agent Reinforcement Learning Based Cooperative Edge Caching in Wireless Networks
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,