Classification of Breast Cancer Histopathological Images using Residual Learning-based CNN

被引:0
|
作者
Dubey, Aditya [1 ]
Yadav, Pradeep [2 ]
Bhargava, Chandra Prakash [2 ]
Pathak, Trapti [3 ]
Kumari, Jyoti [2 ]
Shrivastava, Deshdeepak [4 ]
机构
[1] Madhav Inst Sci & Technol, Ctr Internet Things, Gwalior, India
[2] ITM Gwalior, Dept Comp Sci & Engn, Gwalior, India
[3] ITM Univ, Sch Sci, Gwalior, India
[4] ITM Gwalior, Dept Informat Technol, Gwalior, India
关键词
Residual Learning; Histopathological Image; Deep Features; Data Augmentation; CNN; Breast Cancer; DIAGNOSIS;
D O I
10.3837/tiis.2024.12.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Among the most popular methods for diagnosing breast cancer in women is a biopsy, in which tissue is taken out and examined under a microscope via a pathologist to search for anomalies in the tissue. This method can be laborious, prone to mistakes, and yield inconsistent outcomes based on the pathologist's degree of experience. In this research, for detecting breast cancer tumors, an automated method based on histopathology images is used. With the proposed technique, a convolutional neural network (CNN) of the dimensions 152-layers is utilized for breast cancer histopathology image categorization called ResHist, which depends on residual learning. Furthermore, we construct a data augmentation strategy using affine transformation, image patch creation, and stain normalization to improve the accuracy of the designed model. Additionally, if data augmentation is used, this method obtains F1-score of 93.45% and an accuracy of 92.52%. For the purpose of classifying malignant and benign histological images, the suggested method performs better than the current approaches. Additionally, our research findings show that our method outperforms the pre-trained networks in the classifying the histopathological images, including ResNet152, ResNet50, Inception-v3, GoogleNet, VGG19, VGG16, and AlexNet.
引用
收藏
页码:3365 / 3389
页数:25
相关论文
共 50 条
  • [31] HYBRID OPTIMIZATION ENABLED SEGMENTATION AND DEEP LEARNING FOR BREAST CANCER DETECTION AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES
    Salim, Samla
    Sarath, R.
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2023, 35 (06):
  • [32] Classification of Histopathological Images of Penile Cancer using DenseNet and Transfer Learning
    Mendes Lauande, Marcos Gabriel
    Teles, Amanda Mara
    da Silva, Leandro Lima
    Falcao Matos, Caio Eduardo
    Braz Junior, Geraldo
    de Paiva, Anselmo Cardoso
    Sousa de Almeida, Joao Dallyson
    Gil da Costa Oliveira, Rui Miguel
    Brito, Haissa Oliveira
    Nascimento, Ana Giselia
    Feitosa Pestana, Ana Clea
    Silva Azevedo dos Santos, Ana Paula
    Lopes, Fernanda Ferreira
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 976 - 983
  • [33] A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
    Boumaraf, Said
    Liu, Xiabi
    Zheng, Zhongshu
    Ma, Xiaohong
    Ferkous, Chokri
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
  • [34] An Elaborative Approach for the Histopathological Classification of the Breast Cancer using Residual Neural Networks
    Madhulika, P. S. S.
    Sampath, Nalini
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 447 - 456
  • [35] Classification of histopathological images using Deep Learning
    Badea, Liviu
    Stanescu, Emil
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2020, 30 (01): : 27 - 36
  • [36] Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network
    Alom, Md Zahangir
    Yakopcic, Chris
    Nasrin, Shamima
    Taha, Tarek M.
    Asari, Vijayan K.
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) : 605 - 617
  • [37] Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network
    Md Zahangir Alom
    Chris Yakopcic
    Mst. Shamima Nasrin
    Tarek M. Taha
    Vijayan K. Asari
    Journal of Digital Imaging, 2019, 32 : 605 - 617
  • [38] Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma
    Liao, Haotian
    Long, Yuxi
    Han, Ruijiang
    Wang, Wei
    Xu, Lin
    Liao, Mingheng
    Zhang, Zhen
    Wu, Zhenru
    Shang, Xuequn
    Li, Xuefeng
    Peng, Jiajie
    Yuan, Kefei
    Zeng, Yong
    CLINICAL AND TRANSLATIONAL MEDICINE, 2020, 10 (02):
  • [39] Evaluating Interpretability in Deep Learning using Breast Cancer Histopathological Images
    Macedo, Daniel C.
    de Lima, John W. S.
    Santos, Vinicius D.
    Moraes, Tasso L. O.
    Neto, Fernando M. P.
    Arrais, Nicksson
    Vinuto, Tiago
    Lucena, Joao
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 276 - 281
  • [40] Classification and quantitative analysis of histopathological images of breast cancer
    Anuranjeeta
    Bhattacharjee, Romel
    Sharma, Shiru
    Shukla, K. K.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2021, 35 (03) : 263 - 293