Experimental Study on Mechanical Properties of Graded EPS-Steel Fiber-Reinforced Concrete

被引:0
|
作者
Wang, Yangsheng [1 ]
Zhuang, Xinshan [1 ]
机构
[1] Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
mix proportion design; compressive strength; flexural strength; workability; modified similar bending-to-compression ratio coefficient equation; EXPANDED POLYSTYRENE;
D O I
10.3390/app15041980
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study designs the aggregate gradation and calculates the benchmark mix proportion of concrete based on two sets of regression coefficients. Copper-plated micro-steel fibers and graded EPS (expanded polystyrene) particles, with varying volume ratios of cementing materials, were incorporated into concrete specimens of C30, C40, and C50 grades made from fine aggregates and gravel. The specimens underwent compressive strength, flexural strength, and slump tests to investigate and analyze the effects of steel fibers and graded EPS on the mechanical properties of concrete. A modified equation for the similar bending-to-compression ratio coefficient was established, and a method for calculating the extreme value of the similar bending-to-compression ratio under the combined action of graded EPS and steel fibers was proposed, in order to predict the optimal dosage of steel fibers and graded EPS. The results show that for concrete of all grades (fine aggregate and gravel groups), the compressive and bending failure modes exhibited high consistency. After incorporating EPS, the specimens displayed some ductility during compressive failure, and compressive strength was negatively correlated with the volume fraction of EPS. As the volume fraction of EPS increased, the workability of the concrete decreased. At 7 days of curing, the uniaxial compressive strength of the concrete specimens was 60-75% of the 28-day strength. The tensile failure of graded EPS-steel fiber concrete was divided into four stages. For every 0.25% increase in steel fiber volume fraction, the increase in flexural strength was most likely between 14.35% and 17.61%, with the maximum growth rate being approximately 27%, and the distribution of growth rates was relatively dispersed. When applying the current bending-to-compression ratio model to calculate the flexural strength of concrete under the combined action of graded EPS and steel fibers, a significant deviation from the experimental values was observed. By introducing the modified similar bending-to-compression ratio coefficient equation, a conversion relationship between compressive strength and flexural strength was established. The adjusted R-value was 0.989, and a comparison of the predicted values with the experimental results showed high accuracy, offering considerable reference value.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Mechanical properties and compressive constitutive model of steel fiber-reinforced geopolymer concrete
    Zheng, Juhuan
    Qi, Liang
    Zheng, Yongqian
    Zheng, Liya
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [42] Mechanical properties of steel fiber-reinforced rubber concrete after elevated temperature
    Liang, Jiongfeng
    Liu, Kaiwei
    Wang, Caisen
    Wang, Xuegang
    Liu, Jicheng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [43] Mechanical properties of normal to high-strength steel fiber-reinforced concrete
    Khaloo, AR
    Kim, N
    CEMENT CONCRETE AND AGGREGATES, 1996, 18 (02): : 92 - 97
  • [44] EFFECT OF CURING REGIMES ON THE MECHANICAL AND FRESH PROPERTIES OF STEEL FIBER-REINFORCED CONCRETE
    Ozturk, Oguzhan
    Yenidunya, Eren
    Keskin, Ulku Sultan
    ARCHITECTURE CIVIL ENGINEERING ENVIRONMENT, 2021, 14 (01) : 69 - 81
  • [45] Dynamic Mechanical Properties of Steel Fiber-Reinforced Concrete Subjected to Shock Loading
    Jiang, Fang
    Tan, Yuesheng
    Zhao, Dong
    ADVANCES IN MECHANICAL ENGINEERING, PTS 1-3, 2011, 52-54 : 703 - 708
  • [46] Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete
    Gao, JM
    Sun, W
    Morino, K
    CEMENT & CONCRETE COMPOSITES, 1997, 19 (04): : 307 - 313
  • [47] Mechanical properties and microstructure of ITZs in steel and polypropylene hybrid fiber-reinforced concrete
    Zhou, Ming
    He, Xiongjun
    Wang, Huayi
    Wu, Chao
    He, Jia
    Wei, Bingyan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 415
  • [48] An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete
    Murali, Kallempudi
    Meena, T.
    ADVANCES IN CONCRETE CONSTRUCTION, 2021, 12 (06) : 499 - 505
  • [49] Fracture behavior and properties of functionally graded fiber-reinforced concrete
    Roesler, Jeffery
    Bordelon, Amanda
    Gaedicke, Cristian
    Park, Kyoungsoo
    Paulino, Glaucio
    MULTISCALE AND FUNCTIONALLY GRADED MATERIALS, 2008, 973 : 513 - 518
  • [50] An Experimental Study on Dynamic Mechanical Properties of Fiber-Reinforced Concrete under Different Strain Rates
    Wu, Yuexiu
    Song, Wanpeng
    Zhao, Wusheng
    Tan, Xianjun
    APPLIED SCIENCES-BASEL, 2018, 8 (10):