Experimental Study on Mechanical Properties of Graded EPS-Steel Fiber-Reinforced Concrete

被引:0
|
作者
Wang, Yangsheng [1 ]
Zhuang, Xinshan [1 ]
机构
[1] Hubei Univ Technol, Hubei Prov Ecol Rd Engn Technol Res Ctr, Wuhan 430068, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
mix proportion design; compressive strength; flexural strength; workability; modified similar bending-to-compression ratio coefficient equation; EXPANDED POLYSTYRENE;
D O I
10.3390/app15041980
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study designs the aggregate gradation and calculates the benchmark mix proportion of concrete based on two sets of regression coefficients. Copper-plated micro-steel fibers and graded EPS (expanded polystyrene) particles, with varying volume ratios of cementing materials, were incorporated into concrete specimens of C30, C40, and C50 grades made from fine aggregates and gravel. The specimens underwent compressive strength, flexural strength, and slump tests to investigate and analyze the effects of steel fibers and graded EPS on the mechanical properties of concrete. A modified equation for the similar bending-to-compression ratio coefficient was established, and a method for calculating the extreme value of the similar bending-to-compression ratio under the combined action of graded EPS and steel fibers was proposed, in order to predict the optimal dosage of steel fibers and graded EPS. The results show that for concrete of all grades (fine aggregate and gravel groups), the compressive and bending failure modes exhibited high consistency. After incorporating EPS, the specimens displayed some ductility during compressive failure, and compressive strength was negatively correlated with the volume fraction of EPS. As the volume fraction of EPS increased, the workability of the concrete decreased. At 7 days of curing, the uniaxial compressive strength of the concrete specimens was 60-75% of the 28-day strength. The tensile failure of graded EPS-steel fiber concrete was divided into four stages. For every 0.25% increase in steel fiber volume fraction, the increase in flexural strength was most likely between 14.35% and 17.61%, with the maximum growth rate being approximately 27%, and the distribution of growth rates was relatively dispersed. When applying the current bending-to-compression ratio model to calculate the flexural strength of concrete under the combined action of graded EPS and steel fibers, a significant deviation from the experimental values was observed. By introducing the modified similar bending-to-compression ratio coefficient equation, a conversion relationship between compressive strength and flexural strength was established. The adjusted R-value was 0.989, and a comparison of the predicted values with the experimental results showed high accuracy, offering considerable reference value.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Mechanical properties of steel fiber-reinforced concrete
    Thomas, Job
    Ramaswamy, Ananth
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2007, 19 (05) : 385 - 392
  • [2] Experimental Study on the Mechanical Properties of Recycled Spiral Steel Fiber-Reinforced Rubber Concrete
    Yan, Jinqiu
    Gao, Yongtao
    Tang, Minggao
    Ding, Nansheng
    Xu, Qiang
    Peng, Man
    Zhao, Hua
    BUILDINGS, 2024, 14 (04)
  • [3] Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Concrete
    Kinjawadekar, Trupti Amit
    Patil, Shantharam
    Nayak, Gopinatha
    Kinjawadekar, Amit
    Kulal, Shreyas A.
    JOURNAL OF ARCHITECTURAL ENGINEERING, 2024, 30 (04)
  • [4] Experimental Study on Mechanical Properties of Hybrid Fiber-Reinforced Concrete
    Kinjawadekar, Trupti Amit
    Patil, Shantharam
    Nayak, Gopinatha
    Kinjawadekar, Amit
    Kulal, Shreyas A.
    Journal of Architectural Engineering, 1600, 30 (04):
  • [5] Experimental analysis on mechanical properties of different types of steel fiber-reinforced concrete
    Shao, Jing-Gan
    CIVIL ENGINEERING AND URBAN PLANNING IV, 2016, : 727 - 731
  • [6] Study on Mechanical Properties of Fiber-reinforced Concrete
    Zhang J.
    Han K.
    Wang M.
    Cheng J.
    Wu R.
    Journal of Engineering Science and Technology Review, 2023, 16 (06) : 44 - 53
  • [7] An experimental study on mechanical properties of fiber-reinforced concrete of energy piles
    Zhao S.
    Chen L.
    Fu Y.
    Frattura ed Integrita Strutturale, 2017, 11 (41): : 412 - 423
  • [8] Experimental Study of the Mechanical Properties and Microstructure of Basalt Fiber-Reinforced Concrete
    Liu, Runqing
    Zhao, Shuo
    Sun, Sihui
    Cui, Yunpeng
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (07)
  • [9] Experimental Study on the Mechanical Properties of Amorphous Alloy Fiber-Reinforced Concrete
    Jiang, Chaohua
    Wang, Yizhi
    Guo, Wenwen
    Jin, Chen
    Wei, Min
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [10] Experimental study on mechanical properties of steel and steel fiber reinforced concrete beams
    Wu, Kai
    Zhang, Yanjie
    Lin, Shiqi
    Liang, Qingqing
    Qian, Shiyuan
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2022, 31 (17):