Outer approximation for generalized convex mixed-integer nonlinear robust optimization problems

被引:0
|
作者
Kuchlbauer, Martina [1 ]
机构
[1] Univ Technol Nuremberg, Ulmenstr 52h, D-90443 Nurnberg, Germany
关键词
Robust optimization; Mixed-integer nonlinear optimization; Generalized convexity; Outer approximation; Bundle method; ALGORITHM;
D O I
10.1016/j.orl.2025.107243
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider mixed-integer nonlinear robust optimization problems with nonconvexities. In detail, the functions can be nonsmooth and generalized convex, i.e., f degrees-quasiconvex or f degrees-pseudoconvex. We propose a robust optimization method that requires no certain structure of the adversarial problem, but only approximate worst-case evaluations. The method integrates a bundle method, for continuous subproblems, into an outer approximation approach. We prove that our algorithm converges and finds an approximately robust optimal solution and propose robust gas transport as a suitable application.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] An Outer-Inner Approximation for Separable Mixed-Integer Nonlinear Programs
    Hijazi, Hassan
    Bonami, Pierre
    Ouorou, Adam
    INFORMS JOURNAL ON COMPUTING, 2014, 26 (01) : 31 - 44
  • [32] Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs
    Kesavan, P
    Allgor, RJ
    Gatzke, EP
    Barton, PI
    MATHEMATICAL PROGRAMMING, 2004, 100 (03) : 517 - 535
  • [33] Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions
    Karbowski, Andrzej
    ENERGIES, 2021, 14 (20)
  • [34] An adaptive patch approximation algorithm for bicriteria convex mixed-integer problems
    Diessel, Erik
    OPTIMIZATION, 2022, 71 (15) : 4321 - 4366
  • [35] Mixed-integer nonlinear optimization
    Belotti, Pietro
    Kirches, Christian
    Leyffer, Sven
    Linderoth, Jeff
    Luedtke, James
    Mahajan, Ashutosh
    ACTA NUMERICA, 2013, 22 : 1 - 131
  • [36] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109
  • [37] Automatic Reformulations for Convex Mixed-Integer Nonlinear Optimization: Perspective and Separability
    Sharma, Meenarli
    Mahajan, Ashutosh
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 233
  • [38] A Global Optimization Algorithm for Non-Convex Mixed-Integer Problems
    Gergel, Victor
    Barkalov, Konstantin
    Lebedev, Ilya
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 78 - 81
  • [39] Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems
    Dua, V
    Pistikopoulos, EN
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (10) : 3976 - 3987
  • [40] Surrogate-based optimization for mixed-integer nonlinear problems
    Kim, Sun Hye
    Boukouvala, Fani
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 140 (140)