EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection

被引:0
|
作者
Li, Pengyu [1 ]
Liu, Chenhe [1 ]
Li, Tengfei [1 ]
Wang, Xinyu [1 ]
Zhang, Shihui [1 ]
Yu, Dongyang [2 ]
机构
[1] Yanshan Univ, Qinhuangdao 066000, Hebei, Peoples R China
[2] Beijing Rigour Technol Co Ltd, Beijing, Peoples R China
关键词
Small object detection; Traffic signs; Multi-scale fusion; Feature diversity;
D O I
10.1007/978-3-031-72335-3_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of small objects, particularly traffic signs, is a critical subtask within object detection and autonomous driving. Despite the notable achievements in previous research, two primary challenges persist. Firstly, the main issue is the singleness of feature extraction. Secondly, the detection process fails to effectively integrate with objects of varying sizes or scales. These issues are also prevalent in generic object detection. Motivated by these challenges, in this paper, we propose a novel object detection network named Efficient Multi-scale and Diverse Feature Network (EMDFNet) for traffic sign detection that integrates an Augmented Shortcut Module and an Efficient Hybrid Encoder to address the aforementioned issues simultaneously. Specifically, the Augmented Shortcut Module utilizes multiple branches to integrate various spatial semantic information and channel semantic information, thereby enhancing feature diversity. The Efficient Hybrid Encoder utilizes global feature fusion and local feature interaction based on various features to generate distinctive classification features by integrating feature information in an adaptable manner. Extensive experiments on the Tsinghua-Tencent 100K (TT100K) benchmark and the German Traffic Sign Detection Benchmark (GTSDB) demonstrate that our EMDFNet outperforms other state-of-the-art detectors in performance while retaining the real-time processing capabilities of single-stage models. This substantiates the effectiveness of EMDFNet in detecting small traffic signs.
引用
收藏
页码:120 / 136
页数:17
相关论文
共 50 条
  • [21] EMGNet: Efficient Multi-Scale Feature Generation Adaptive Network
    Lee, Gwanghan
    Kim, Minha
    Kim, Minha
    Woo, Simon S.
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 883 - 892
  • [22] Improved YOLOv5 network for real-time multi-scale traffic sign detection
    Wang, Junfan
    Chen, Yi
    Dong, Zhekang
    Gao, Mingyu
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10): : 7853 - 7865
  • [23] Improved YOLOv5 network for real-time multi-scale traffic sign detection
    Junfan Wang
    Yi Chen
    Zhekang Dong
    Mingyu Gao
    Neural Computing and Applications, 2023, 35 : 7853 - 7865
  • [24] Real-time detection network for tiny traffic sign using multi-scale attention module
    TingTing Yang
    Chao Tong
    Science China Technological Sciences, 2022, 65 : 396 - 406
  • [25] Real-time detection network for tiny traffic sign using multi-scale attention module
    YANG TingTing
    TONG Chao
    Science China(Technological Sciences), 2022, 65 (02) : 396 - 406
  • [26] Real-time detection network for tiny traffic sign using multi-scale attention module
    Yang TingTing
    Tong Chao
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (02) : 396 - 406
  • [27] Efficient Multi-Scale Feature Fusion for Image Manipulation Detection
    Zhang, Yuxue
    Feng, Guorui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (05) : 1107 - 1111
  • [28] An efficient network for multi-scale and overlapped wildlife detection
    Lu, Xin
    Lu, Xiaobo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (02) : 343 - 351
  • [29] Traffic sign recognition based on multi-scale feature fusion and extreme learning machine
    Ma Yong-jie
    Cheng Shi-sheng
    Ma Yun-ting
    Chen Min
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (06) : 572 - 582
  • [30] An efficient network for multi-scale and overlapped wildlife detection
    Xin Lu
    Xiaobo Lu
    Signal, Image and Video Processing, 2023, 17 : 343 - 351