We solve the Einstein constraint equations for a first-order causal viscous relativistic hydrodynamic theory in the case of a conformal fluid. For such a theory, a direct application of the conformal method does not lead to a decoupling of the equations, even for constant-mean curvature initial data. We combine the conformal method applied to a background perfect fluid theory with a perturbative argument in order to obtain the result.
机构:
Univ Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59072970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59072970 Natal, RN, Brazil
Bemfica, Fabio S.
Disconzi, Marcelo M.
论文数: 0引用数: 0
h-index: 0
机构:
Vanderbilt Univ, Dept Math, Nashville, TN 37211 USAUniv Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59072970 Natal, RN, Brazil
Disconzi, Marcelo M.
Noronha, Jorge
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Illinois Ctr Adv Studies Universe, Urbana, IL 61801 USA
Univ Illinois, Dept Phys, Urbana, IL 61801 USAUniv Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59072970 Natal, RN, Brazil
Noronha, Jorge
Scherrer, Robert J.
论文数: 0引用数: 0
h-index: 0
机构:
Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USAUniv Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59072970 Natal, RN, Brazil