General Class-Balanced Multicentric Dynamic Prototype Pseudo-Labeling for Source-Free Domain Adaptation

被引:0
|
作者
Qu, Sanqing [1 ]
Chen, Guang [1 ]
Zhang, Jing [2 ]
Li, Zhijun [1 ]
He, Wei [3 ]
Tao, Dacheng [4 ]
机构
[1] Tongji Univ, Shanghai, Peoples R China
[2] Univ Sydney, Sydney, Australia
[3] Univ Sci & Technol Beijing, Beijing, Peoples R China
[4] Nanyang Technol Univ, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Source-free domain adaptation; Class-balanced sampling; Multicentric prototype clustering; Pseudo-labeling;
D O I
10.1007/s11263-024-02335-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Source-free Domain Adaptation aims to adapt a pre-trained source model to an unlabeled target domain while circumventing access to well-labeled source data. To compensate for the absence of source data, most existing approaches employ prototype-based pseudo-labeling strategies to facilitate self-training model adaptation. Nevertheless, these methods commonly rely on instance-level predictions for direct monocentric prototype construction, leading to category bias and noisy labels. This is primarily due to the inherent visual domain gaps that often differ across categories. Besides, the monocentric prototype design is ineffective and may introduce negative transfer for those ambiguous data. To tackle these challenges, we propose a general class-Balanced Multicentric Dynamic (BMD) prototype strategy. Specifically, we first introduce a global inter-class balanced sampling strategy for each target category to mitigate category bias. Subsequently, we design an intra-class multicentric clustering strategy to generate robust and representative prototypes. In contrast to existing approaches that only update pseudo-labels at fixed intervals, e.g., one epoch, we employ a dynamic pseudo-labeling strategy that incorporates network update information throughout the model adaptation. We refer to the vanilla implementation of these three sub-strategies as BMD-v1. Furthermore, we promote the BMD-v1 to BMD-v2 by incorporating a consistency-guided reweighting strategy to improve inter-class balanced sampling, and leveraging the silhouettes metric to realize adaptive intra-class multicentric clustering. Extensive experiments conducted on both 2D images and 3D point cloud recognition demonstrate that our proposed BMD strategy significantly improves existing representative methods. Remarkably, BMD-v2 improves NRC from 52.6 to 59.2% in accuracy on the PointDA-10 benchmark. The code will be available at https://github.com/ispc-lab/BMD.
引用
收藏
页数:22
相关论文
共 30 条
  • [21] Unsupervised Domain Adaptation for Person Re-Identification through Source-Guided Pseudo-Labeling
    Dubourvieux, Fabian
    Audigier, Romaric
    Loesch, Angelique
    Ainouz, Samia
    Canu, Stephane
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4957 - 4964
  • [22] Uncertainty-aware pseudo-label filtering for source-free unsupervised domain adaptation
    Chen, Xi
    Yang, Haosen
    Zhang, Huicong
    Yao, Hongxun
    Zhu, Xiatian
    NEUROCOMPUTING, 2024, 575
  • [23] An Entropy-Based Pseudo-Label Mixup Method for Source-Free Domain Adaptation
    Chen, Qinghan
    Lu, Zhiyang
    Cheng, Ming
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 105 - 117
  • [24] Robust Nearest Neighbors for Source-Free Domain Adaptation Under Class Distribution Shift
    Tejero-de-Pablos, Antonio
    Togashi, Riku
    Otani, Mayu
    Satoh, Shinichi
    COMPUTER VISION - ECCV 2024, PT LXXII, 2025, 15130 : 1 - 17
  • [25] Pseudo-label refinement via hierarchical contrastive learning for source-free unsupervised domain adaptation
    Li, Deng
    Zhang, Jianguang
    Wu, Kunhong
    Shi, Yucheng
    Han, Yahong
    PATTERN RECOGNITION LETTERS, 2024, 186 : 236 - 242
  • [26] IPLC: Iterative Pseudo Label Correction Guided by SAM for Source-Free Domain Adaptation in Medical Image Segmentation
    Zhang, Guoning
    Qi, Xiaoran
    Yan, Bo
    Wang, Guotai
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XI, 2024, 15011 : 351 - 360
  • [27] Source-Free Domain Adaptation for Medical Image Segmentation via Prototype-Anchored Feature Alignment and Contrastive Learning
    Yu, Qinji
    Xi, Nan
    Yuan, Junsong
    Zhou, Ziyu
    Dang, Kang
    Ding, Xiaowei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VII, 2023, 14226 : 3 - 12
  • [28] Uncertainty Estimation Pseudo-Label-Guided Source-Free Domain Adaptation for Cross-Domain Remaining Useful Life Prediction in IIoT
    Chen, Zhuohang
    Chen, Jinglong
    Pan, Tongyang
    Xie, Jingsong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 236 - 249
  • [29] UPL-SFDA: Uncertainty-Aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation
    Wu, Jianghao
    Wang, Guotai
    Gu, Ran
    Lu, Tao
    Chen, Yinan
    Zhu, Wentao
    Vercauteren, Tom
    Ourselin, Sebastien
    Zhang, Shaoting
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3932 - 3943
  • [30] Pseudo-Label Clustering-Driven Dual-Level Contrast Learning Based Source-Free Domain Adaptation for Fundus Image Segmentation
    Zhou, Wei
    Ji, Jianhang
    Cui, Wei
    Yi, Yugen
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 492 - 503