Flexible anchor-based multi-view clustering with low-rank decomposition

被引:0
|
作者
Zhang, Zheng [1 ]
Huang, Yufang [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
Multi-view clustering; Anchor learning; Low-rank decomposition; Subspace clustering;
D O I
10.1007/s13042-024-02444-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view subspace clustering have attracted more attention recently due to their promising capabilities to reveal the underlying structure between data points. Nonetheless, most current methods endure high time computational complexity, that results in the inapplicability to medium and large-scale datasets. In addition, attributing to the existence of heterogeneous noise, it is tremendously arduous to study an effective low-dimensional subspace structure directly from the raw data points, leading to underperforming clustering results. To tackle these obstacles, we propose Flexible Anchor-based Multi-view Clustering with Low-rank Decomposition (FAMCL) method that combines the anchor learning with the learnable low-rank matrix factorization strategy. Specifically, the anchor point learning and anchor graph construction are fused into a joint optimization framework, which provides a solid foundation to boost the specific representations within different views. To delve deeper into the underlying structure, a low-rank decomposition strategy is applied, decomposing the anchor graph matrix into two components: an orthogonal matrix and a latent representation. Furthermore, an effective alternating direction iterative method with augmented Lagrangian multiplier is introduced to optimize our model. Extensive experiments on seven standard multi-view datasets demonstrate the advantages of FAMCL over other progressive methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deep low-rank subspace ensemble for multi-view clustering
    Xue, Zhe
    Du, Junping
    Du, Dawei
    Lyu, Siwei
    INFORMATION SCIENCES, 2019, 482 : 210 - 227
  • [22] Multi-view Clustering Based on Low-rank Representation and Adaptive Graph Learning
    Yixuan Huang
    Qingjiang Xiao
    Shiqiang Du
    Yao Yu
    Neural Processing Letters, 2022, 54 : 265 - 283
  • [23] Low-rank Tensor Graph Learning Based Incomplete Multi-view Clustering
    Wen J.
    Yan K.
    Zhang Z.
    Xu Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1433 - 1445
  • [24] INCOMPLETE multi-view clustering based on low-rank adaptive graph learning
    Zhu, Jingyu
    Wan, Minghua
    Yang, Guowei
    Yang, Zhangjing
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [25] Multi-view Clustering Based on Low-rank Representation and Adaptive Graph Learning
    Huang, Yixuan
    Xiao, Qingjiang
    Du, Shiqiang
    Yu, Yao
    NEURAL PROCESSING LETTERS, 2022, 54 (01) : 265 - 283
  • [26] Spectral Embedding and Novel Low-rank Approximation Based Multi-view Clustering
    Liu, Xiaobo
    Long, Yin
    Nomikos, Yiannis
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 840 - 846
  • [27] Multi-view clustering with Laplacian rank constraint based on symmetric and nonnegative low-rank representation
    Gao, Chiwei
    Xu, Ziwei
    Chen, Xiuhong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 236
  • [28] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Senhong Wang
    Jiangzhong Cao
    Fangyuan Lei
    Jianjian Jiang
    Qingyun Dai
    Bingo Wing-Kuen Ling
    Applied Intelligence, 2023, 53 : 3687 - 3712
  • [29] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Wang, Senhong
    Cao, Jiangzhong
    Lei, Fangyuan
    Jiang, Jianjian
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    APPLIED INTELLIGENCE, 2023, 53 (04) : 3687 - 3712
  • [30] Multi-view Ensemble Clustering via Low-rank and Sparse Decomposition: From Matrix to Tensor
    Zhang, Xuanqi
    Shen, Qiangqiang
    Chen, Yongyong
    Zhang, Guokai
    Hua, Zhongyun
    Su, Jingyong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (07)