Flexible anchor-based multi-view clustering with low-rank decomposition

被引:0
|
作者
Zhang, Zheng [1 ]
Huang, Yufang [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
关键词
Multi-view clustering; Anchor learning; Low-rank decomposition; Subspace clustering;
D O I
10.1007/s13042-024-02444-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view subspace clustering have attracted more attention recently due to their promising capabilities to reveal the underlying structure between data points. Nonetheless, most current methods endure high time computational complexity, that results in the inapplicability to medium and large-scale datasets. In addition, attributing to the existence of heterogeneous noise, it is tremendously arduous to study an effective low-dimensional subspace structure directly from the raw data points, leading to underperforming clustering results. To tackle these obstacles, we propose Flexible Anchor-based Multi-view Clustering with Low-rank Decomposition (FAMCL) method that combines the anchor learning with the learnable low-rank matrix factorization strategy. Specifically, the anchor point learning and anchor graph construction are fused into a joint optimization framework, which provides a solid foundation to boost the specific representations within different views. To delve deeper into the underlying structure, a low-rank decomposition strategy is applied, decomposing the anchor graph matrix into two components: an orthogonal matrix and a latent representation. Furthermore, an effective alternating direction iterative method with augmented Lagrangian multiplier is introduced to optimize our model. Extensive experiments on seven standard multi-view datasets demonstrate the advantages of FAMCL over other progressive methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multi-View Clustering by Low-Rank Tensor Decomposition
    Cheng S.
    Hao W.
    Li C.
    Zhang Z.
    Cao R.
    Li, Chen, 1600, Xi'an Jiaotong University (54): : 119 - 125and133
  • [2] Anchor Graph Based Low-Rank Incomplete Multi-View Subspace Clustering
    Liu, Xiaolan
    Shi, Zongyu
    Ye, Zehui
    Liang, Yong
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (12): : 60 - 70
  • [3] Multi-view Spectral Clustering Based on Low-rank Tensor Decomposition
    Xiao, Qingjiang
    Du, Shiqiang
    Huang, Yixuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2258 - 2263
  • [4] Anchor-based incomplete multi-view spectral clustering
    Yin, Jun
    Cai, Runcheng
    Sun, Shiliang
    NEUROCOMPUTING, 2022, 514 : 526 - 538
  • [5] Anchor-based scalable multi-view subspace clustering
    Zhou, Shibing
    Yang, Mingrui
    Wang, Xi
    Song, Wei
    INFORMATION SCIENCES, 2024, 666
  • [6] Anchor-based multi-view subspace clustering with graph learning
    Su, Chao
    Yuan, Haoliang
    Lai, Loi Lei
    Yang, Qiang
    NEUROCOMPUTING, 2023, 547
  • [7] Anchor-based sparse subspace incomplete multi-view clustering
    Li, Ao
    Feng, Cong
    Wang, Zhuo
    Sun, Yuegong
    Wang, Zizhen
    Sun, Ling
    WIRELESS NETWORKS, 2024, 30 (06) : 5559 - 5570
  • [8] Robust Multi-View Spectral Clustering via Low-Rank and Sparse Decomposition
    Xia, Rongkai
    Pan, Yan
    Du, Lei
    Yin, Jian
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2149 - 2155
  • [9] Facilitated low-rank multi-view subspace clustering
    Zhang, Guang-Yu
    Huang, Dong
    Wang, Chang-Dong
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [10] Robust multi-view low-rank embedding clustering
    Jian Dai
    Hong Song
    Yunzhi Luo
    Zhenwen Ren
    Jian Yang
    Neural Computing and Applications, 2023, 35 : 7877 - 7890