Enhanced Segmentation in Abdominal CT Images: Leveraging Hybrid CNN-Transformer Architectures and Compound Loss Function

被引:1
|
作者
Piri, Fatemeh [1 ]
Karimi, Nader [1 ]
Samavi, Shadrokh [2 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Seattle Univ, Dept Comp Sci, Seattle, WA 98122 USA
关键词
Semantic Segmentation; Transformer; HiFormer; Abdominal Segmentation; Medical Image;
D O I
10.1109/AIIoT61789.2024.10579036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate segmentation of abdominal organs in CT scans is essential for medical diagnosis and treatment. This paper addresses limitations in current methods by proposing an enhanced HiFormer model for improved segmentation accuracy. We introduce a novel hybrid architecture that combines the strengths of convolutional neural networks (CNNs) and transformers. This model incorporates Cross-covariance image Transformer blocks within the encoder, allowing for efficient spatial information processing. Additionally, a compound DiceTopK loss function optimizes training for better handling organ size variations. This approach effectively addresses the challenges of organ size variability and robustness, surpassing baseline models. Evaluations on the Synapse multi-organ dataset demonstrate significant improvements, achieving a Dice score of 81.15. The proposed method holds promise for enhancing the clinical applications of medical image analysis.
引用
收藏
页码:0363 / 0369
页数:7
相关论文
共 50 条
  • [21] UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for medical image segmentation
    Guo, Xiayu
    Lin, Xian
    Yang, Xin
    Yu, Li
    Cheng, Kwang-Ting
    Yan, Zengqiang
    PATTERN RECOGNITION, 2024, 152
  • [22] RAMIS: Increasing robustness and accuracy in medical image segmentation with hybrid CNN-transformer synergy
    Gu, Jia
    Tian, Fangzheng
    Oh, Il-Seok
    NEUROCOMPUTING, 2025, 618
  • [23] HCTA-Net: A Hybrid CNN-Transformer Attention Network for Surgical Instrument Segmentation
    Yang, Lei
    Wang, Hongyong
    Bian, Guibin
    Liu, Yanhong
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (04): : 929 - 944
  • [24] Polarformer: Optic Disc and Cup Segmentation Using a Hybrid CNN-Transformer and Polar Transformation
    Feng, Yaowei
    Li, Zhendong
    Yang, Dong
    Hu, Hongkai
    Guo, Hui
    Liu, Hao
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [25] Speckle Noise Reduction for Medical Ultrasound Images Using Hybrid CNN-Transformer Network
    Sivaanpu, Anparasy
    Punithakumar, Kumaradevan
    Zheng, Rui
    Noga, Michelle
    Ta, Dean
    Lou, Edmond H. M.
    Le, Lawrence H.
    IEEE ACCESS, 2024, 12 : 168607 - 168625
  • [26] Semantic segmentation of terrace image regions based on lightweight CNN-Transformer hybrid networks
    Liu X.
    Yi S.
    Li L.
    Cheng X.
    Wang C.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (13): : 171 - 181
  • [27] CC-TransXNet: a hybrid CNN-transformer network for automatic segmentation of optic cup and optic disk from fundus images
    Yuan, Zhongzheng
    Wang, Jinke
    Xu, Yukun
    Xu, Min
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, : 1027 - 1044
  • [28] CNN IN CT IMAGE SEGMENTATION: BEYOND LOSS FUNCTION FOR EXPLOITING GROUND TRUTH IMAGES
    Song, Youyi
    Yu, Zhen
    Zhou, Teng
    Teoh, Jeremy Yuen-Chun
    Lei, Baiying
    Choi, Kup-Sze
    Qin, Jing
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 325 - 328
  • [29] TransSea: Hybrid CNN-Transformer With Semantic Awareness for 3-D Brain Tumor Segmentation
    Liu, Yu
    Ma, Yize
    Zhu, Zhiqin
    Cheng, Juan
    Chen, Xun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [30] ENHANCING HYBRID CNN-TRANSFORMER VIA FREQUENCY-BASED BRIDGING FOR MEDICAL IMAGE SEGMENTATION
    Zeng Xinyi
    Tang Cheng
    Zeng Pinxian
    Cui Jiaqi
    Yan Binyu
    Wang Peng
    Wang Yan
    IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024, 2024,