Properly colored cycles in edge-colored complete graphs

被引:0
|
作者
Dai, Tianjiao [1 ]
Li, Hao [2 ]
Manoussakis, Yannis [2 ]
Ouyang, Qiancheng [3 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] Univ Paris Saclay, Lab Interdisciplinaire Sci Numer, UMR 9015, CNRS, F-91405 Orsay, France
[3] Shandong Univ, Data Sci Inst, Jinan 250100, Peoples R China
关键词
Edge-colored graph; Properly colored cycle; Anti-Ramsey number; Cycle extendable; HAMILTONIAN CYCLES; COLORINGS;
D O I
10.1016/j.disc.2025.114403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As an analogy of the well-known anti-Ramsey problem, we study the existence of properly colored cycles of given length in an edge-colored complete graph. Let pr(K-n,G) be the maximum number of colors in an edge-coloring of K-n with no properly colored copy of G. In this paper, we determine the exact threshold for cycles pr(K-n,C-l), which proves a conjecture proposed by Fang, Gyori, and Xiao, that the maximum number of colors in an edge-coloring of K-n with no properly colored copy of C-l is max{((l-1)(2))+n-l+1,left perpendicular(l-1)/(3)right perpendicularn-(left perpendicularl(-1)/(3)right perpendicular(2)(+1))+1+r(l-1)}, where Cl is a cycle on l vertices, l-1 equivalent to r(l-1) mod 3, and 0 <=(l-1)<= 2. It is a slight modification of a previous conjecture posed by Manoussakis, Spyratos, Tuza and Voigt. Also, we consider the maximal coloring of K-n whether a properly colored cycle can be extended by exact one more vertex.
引用
收藏
页数:19
相关论文
共 50 条