Impact of wetland conversion to cropland on ecosystem carbon budget and greenhouse gas emissions in Northeast China

被引:0
|
作者
Li, Junjie [1 ,2 ]
Yuan, Junji [1 ]
Dong, Yanhong [1 ,2 ]
Liu, Deyan [3 ]
Zheng, Huijie [1 ,2 ]
Ding, Weixin [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Land-use change; Carbon dioxide; Methane; Nitrous oxide; Climate change; FRESH-WATER MARSH; LAND-USE CHANGE; NET PRIMARY PRODUCTIVITY; N2O EMISSIONS; METHANE EMISSIONS; DRIVING FORCES; SANJIANG PLAIN; NITROUS-OXIDE; CH4; FLUXES; SOIL;
D O I
10.1016/j.agrformet.2024.110311
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Wetlands provide a huge carbon (C) sink and represent strategic areas for regulating climate change. However, extensive wetlands have been lost since 1700, primarily for conversion to cropland. Currently, few studies have comprehensively evaluated changes in C budgets and greenhouse gas (GHG) emissions following wetland conversion to cropland. Here, we measured annual carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from a Phragmites australis-dominated wetland and adjacent wetland-converted soybean cropland by combining eddy covariance and chamber methods. We included biomass removal from cropland in the full C and GHG accounting. Annually, the P. australis wetland was a substantial atmospheric CH4 source (50 f 1 g CH4 m-2) but strong CO2 (-1217 f 162 g CO2 m-2) and weak N2O (-0.1 kg N2O ha-1) sinks, which collectively shaped a big C sink (-294 f 44 g C m-2) and net GHG source (180 f 164 g CO2-eq m-2). Converting P. australis wetland to soybean cropland demolished atmospheric CO2 and N2O sinks, and formed net sources of CO2 (140 f 149 g CO 2 m -2 to 1.2 f 0.5 g CH4 m -2 g C m -2 yr-1, while holding a GHG budget of 203 f 150 g CO2-eq m -2 yr-1. Further, grain and straw in cropland were removed during harvest, creating a C loss of 142 f 18 g C m -2 yr-1, and eventually increased GHG budget to 722 f 165 g CO2-eq m -2 yr-1. Consequently, the full GHG debt of wetland-cropland conversion increased by dozens of times to 542 f 233 g CO2-eq m -2 yr-1, 95.8% of which attributed to biomass removal. Overall, our study contributes to growing recognition of C loss risks of wetland conversion to cropland and highlights the importance of straw return in mitigating climate impacts during agricultural activities. yr-1) and N2O (1.1 f 0.2 kg N2O ha-1 yr-1). Meanwhile, this conversion greatly reduced CH4 emissions yr-1. Taken together, soybean cropland was a net direct atmospheric C source of 39 f 41
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Greenhouse gas budget for terrestrial ecosystems in China
    ZuCong Cai
    Science China Earth Sciences, 2012, 55 : 173 - 182
  • [32] Greenhouse gas budget for terrestrial ecosystems in China
    CAI ZuCong* State Key Laboratory of Soil and Sustainable Agriculture
    ScienceChina(EarthSciences), 2012, 55 (02) : 173 - 182
  • [33] Greenhouse gas budget for terrestrial ecosystems in China
    Cai ZuCong
    SCIENCE CHINA-EARTH SCIENCES, 2012, 55 (02) : 173 - 182
  • [34] Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland
    Lin, Qingwei
    Wang, Shishi
    Li, Yingchen
    Riaz, Luqman
    Yu, Fei
    Yang, Qingxiang
    Han, Shijie
    Ma, Jianmin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 813
  • [35] The carbon and greenhouse gas budget of European croplands
    Smith, Pete
    Jones, Mike
    Osborne, Bruce
    Wattenbach, Martin
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2010, 139 (03) : V - VI
  • [36] The impact of opening the Arctic Northeast Passage on China's carbon emissions
    Yang, Laike
    Jiang, Miaomiao
    TRANSPORT POLICY, 2024, 155 : 242 - 254
  • [37] Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China
    Ding, Fan
    Hu, Ya-Lin
    Li, Lu-Jun
    Li, Ang
    Shi, Shengwei
    Lian, Pei-Yong
    Zeng, De-Hui
    PLANT AND SOIL, 2013, 373 (1-2) : 659 - 672
  • [38] Vegetation alters the effects of salinity on greenhouse gas emissions and carbon sequestration in a newly created wetland
    Sheng, Qiang
    Wang, Lei
    Wu, Jihua
    ECOLOGICAL ENGINEERING, 2015, 84 : 542 - 550
  • [39] Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China
    Fan Ding
    Ya-Lin Hu
    Lu-Jun Li
    Ang Li
    Shengwei Shi
    Pei-Yong Lian
    De-Hui Zeng
    Plant and Soil, 2013, 373 : 659 - 672
  • [40] Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem
    Bavin, T. K.
    Griffis, T. J.
    Baker, J. M.
    Venterea, R. T.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2009, 134 (3-4) : 234 - 242