Thermal stability of ionic liquids for lithium-ion batteries: A review

被引:1
|
作者
Hu, Xiaokang [1 ]
Wang, Yu [2 ,3 ]
Feng, Xuning [3 ]
Wang, Li [4 ]
Ouyang, Minggao [3 ]
Zhang, Qiang [2 ]
机构
[1] Tsinghua Univ, Zhili Coll, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[3] State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Lithium-ion battery thermal runaway; Ionic liquid; Ionic liquid electrolytes; Thermal stability; Thermal safety; Ionic liquid thermal stability; Battery safety; Ionic liquid battery safety; ELECTROCHEMICAL PROPERTIES; NEGATIVE ELECTRODE; LOW-VISCOSITY; HIGH-VOLTAGE; PHYSICOCHEMICAL PROPERTIES; DECOMPOSITION MECHANISMS; POTENTIAL ELECTROLYTES; CYCLING EFFICIENCY; GRAPHITE ANODE; IMIDAZOLIUM;
D O I
10.1016/j.rser.2024.114949
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conventional carbonate-based organic electrolytes in commercial lithium-ion batteries are considered as responsible for battery safety issues because of their volatile and flammable nature. Ionic liquids, which are nonvolatile, noncombustible with good electrochemical performance and high thermal stability, are regarded as competitive next-generation solvents. Previous studies have focused on the development of ionic liquid systems with better electrochemical performance. However, the thermal stability of ionic liquid electrolytes is seldom discussed. This work comprehensively reviews and summarizes thermal safety studies on ionic liquid electrolytes at three levels: solvents, electrolytes, and batteries. This study compiles thermal stability indicators and values from literature to build a database for further quantitative analysis. According to the database, thermal stability at the electrolyte level does not correlate well with performance at the battery level. Ionic liquids with high thermal stability can generate more heat at the battery level due to their interactions with both the cathode and anode. Through a detailed analysis of reaction sequences at the battery level, this work further proposes the first report on the underlying thermal reaction pathways of ionic liquid-based lithium-ion batteries. Results show that the thermal runaway of TFSI-based ionic liquid lithium-ion batteries is primarily triggered by the Hofmann elimination, along with the involvement of oxygen. Finally, this work outlines potential future developments and directions for creating safer ionic liquids.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Electrolytes Containing Ionic Liquids for Improved Safety of Lithium-ion Batteries
    Nakagawa, Hiroe
    ELECTROCHEMISTRY, 2015, 83 (09) : 707 - 710
  • [12] High-Voltage Resistant Ionic Liquids for Lithium-Ion Batteries
    Qi, Haojun
    Ren, Yongyuan
    Guo, Siyu
    Wang, Yuyue
    Li, Shujin
    Hu, Yin
    Yan, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 591 - 600
  • [13] Thermal stability evaluation of lithium-ion polymer batteries
    Jhang, Wun-Cheng
    Chen, Wei-Chun
    Wang, Yih-Wen
    Chang, Ron-Hsin
    Shu, Chi-Min
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (03) : 1099 - 1105
  • [14] Thermal stability evaluation of lithium-ion polymer batteries
    Wun-Cheng Jhang
    Wei-Chun Chen
    Yih-Wen Wang
    Ron-Hsin Chang
    Chi-Min Shu
    Journal of Thermal Analysis and Calorimetry, 2015, 122 : 1099 - 1105
  • [15] Thermal stability and flammability of electrolytes for lithium-ion batteries
    Arbizzani, Catia
    Gabrielli, Giulio
    Mastragostino, Marina
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4801 - 4805
  • [16] A Critical Review of Thermal Issues in Lithium-Ion Batteries
    Bandhauer, Todd M.
    Garimella, Srinivas
    Fuller, Thomas F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : R1 - R25
  • [17] Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries
    Alkhedher, Mohammad
    Al Tahhan, Aghyad B.
    Yousaf, Jawad
    Ghazal, Mohammed
    Shahbazian-Yassar, Reza
    Ramadan, Mohamad
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [18] Ionic Liquids Electrodeposition of Sn with Different Structures as Anodes for Lithium-Ion Batteries
    Xie, Xueliang
    Zou, Xingli
    Zheng, Kai
    Wang, Shujuan
    Lu, Xionggang
    Xu, Qian
    Zhou, Zhongfu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) : D945 - D953
  • [19] Ionic liquids as electrolyte additives for high-voltage lithium-ion batteries
    Zhang W.
    Huo Y.
    Li G.
    Sun T.
    Zhao Y.
    Li C.
    Huagong Xuebao/CIESC Journal, 2019, 70 (06): : 2334 - 2342
  • [20] Mixing ionic liquids and ethylene carbonate as safe electrolytes for lithium-ion batteries
    Le, Linh T. M.
    Vo, Thanh D.
    Ngo, Khanh H. P.
    Okada, S.
    Alloin, F.
    Garg, A.
    Le, Phung M. L.
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 271 : 769 - 777