TUBES IN COMPLEX HYPERBOLIC MANIFOLDS

被引:0
|
作者
Basmajian, Ara [1 ,2 ]
Kim, Youngju [3 ]
机构
[1] CUNY, Grad Ctr, 365 Fifth Ave, New York, NY 10016 USA
[2] CUNY, Hunter Coll, 695 Pk Ave, New York, NY 10065 USA
[3] Konkuk Univ, Dept Math Educ, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
Collar lemma; complex geodesic; complex hyperbolic manifold; tubu- lar neighborhood theorem; 1ST EIGENVALUE; COLLARS; SUBGROUPS; THEOREM; VOLUMES;
D O I
10.1090/tran/9319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a tubular neighborhood theorem for an embedded complex geodesic in a complex hyperbolic 2-manifold where the width of the tube depends only on the Euler characteristic chi of the embedded complex geodesic. We give an explicit estimate for this width. We supply two applications of the tubular neighborhood theorem. The first is a lower volume bound for such manifolds. The second is an upper bound on the first eigenvalue of the Laplacian in terms of the geometry of the manifold. Finally, we prove a geometric combination theorem for two C-Fuchsian subgroups of PU(2 , 1). Using this combination theorem, we show that the optimal width size of a tube about an embedded complex geodesic is asymptotically bounded between 1 | chi| and 1 root |chi | .
引用
收藏
页码:2031 / 2060
页数:30
相关论文
共 50 条
  • [41] Ritt's theorem and the Heins map in hyperbolic complex manifolds
    Abate, M
    Bracci, F
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 238 - 243
  • [42] Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds
    Bader, Uri
    Fisher, David
    Miller, Nicholas
    Stover, Matthew
    INVENTIONES MATHEMATICAE, 2023, 233 (01) : 169 - 222
  • [43] Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds
    Uri Bader
    David Fisher
    Nicholas Miller
    Matthew Stover
    Inventiones mathematicae, 2023, 233 : 169 - 222
  • [44] Geometry and topology of complex hyperbolic and Cauchy-Riemannian manifolds
    Apanasov, BN
    RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (05) : 895 - 928
  • [45] Evolution families and the Loewner equation II: complex hyperbolic manifolds
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    Mathematische Annalen, 2009, 344 : 947 - 962
  • [46] Compact Complex p-Kähler Hyperbolic Manifolds
    Fathi Haggui
    Samir Marouani
    Complex Analysis and Operator Theory, 2023, 17
  • [47] Ritt's theorem and the Heins map in hyperbolic complex manifolds
    Marco Abate
    Filippo Bracci
    Science China Mathematics, 2005, (S1) : 238 - 243
  • [48] The curve complex and covers via hyperbolic 3-manifolds
    Robert Tang
    Geometriae Dedicata, 2012, 161 : 233 - 237
  • [49] Evolution families and the Loewner equation II: complex hyperbolic manifolds
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    MATHEMATISCHE ANNALEN, 2009, 344 (04) : 947 - 962
  • [50] Collars in complex and quaternionic hyperbolic manifolds - In memory of Hanna Sandler
    Markham, S
    Parker, JR
    GEOMETRIAE DEDICATA, 2003, 97 (01) : 199 - 213