New analytical laws and applications of interaction potentials with a focus on van der Waals attraction

被引:0
|
作者
Borkovic, A. [1 ,2 ]
Gfrerer, M. H. [1 ]
Sauer, R. A. [3 ,4 ,5 ]
机构
[1] Graz Univ Technol, Inst Appl Mech, Tech str 4-II, A-8010 Graz, Austria
[2] Univ Banja Luka, Fac Architecture Civil Engn & Geodesy, Dept Mech & Theory Struct, Banja Luka 78000, Bosnia & Herceg
[3] Ruhr Univ Bochum, Inst Struct Mech, Univ str 150, D-44801 Bochum, Germany
[4] Gdansk Univ Technol, Dept Struct Mech, Fac Civil & Environm Engn, ul Narutowicza 11-12, PL-80233 Gdansk, Poland
[5] Indian Inst Technol Guwahati, Dept Mech Engn, Gauhati 781039, Assam, India
基金
奥地利科学基金会;
关键词
Interaction potential; van der Waals attraction; Pairwise summation; Coarse-grained approach; Contact mechanics; Beam-beam interaction; Beam-infinite half-space interaction; CONTACT MECHANICS; OBJECTS; FORCES; MODEL;
D O I
10.1016/j.apm.2025.116100
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper aims to improve the efficiency of modeling interactions between slender deformable bodies that resemble the shape of fibers. Interaction potentials are modeled as inverse-power laws with respect to the point-pair distance, and the complete body-body potential is obtained by pairwise summation (integration). To speed-up integration, we consider the analytical pre-integration of potentials between specific geometries such as disks, cylinders, rectangles, and rectangular prisms. Several exact new interaction laws are obtained, such as disk-infinite half-space and (in-plane) rectangle-rectangle for an arbitrary exponent, and disk-disk and rectangle-rectangle for van der Waals attraction. To balance efficiency and accuracy, approximate laws are proposed for disk-disk, point-cylinder, and disk-cylinder interactions. Additionally, we have developed a novel formulation for the interaction between a spatial beam and an infinite half-space. The application of the pre-integrated interaction potentials within the finite element method is illustrated via two examples.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Schrodinger equations with van der Waals type potentials
    Yang, Jianfu
    Yu, Weilin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 471 (1-2) : 267 - 298
  • [32] 2-TEMPERATURE VAN DER WAALS POTENTIALS
    ROSENKRANS, JP
    LINDER, B
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (07): : 2927 - +
  • [33] THE PERTURBATION CALCULATION OF VAN-DER-WAALS POTENTIALS
    TANG, KT
    TOENNIES, JP
    YIU, CL
    THEORETICA CHIMICA ACTA, 1994, 88 (03): : 169 - 181
  • [34] The van der Waals potentials of ZnCd, ZnHg, and CdHg
    Wei, L. M.
    Li, P.
    Tang, K. T.
    CHEMICAL PHYSICS LETTERS, 2014, 614 : 269 - 274
  • [35] The Coulomb interaction in van der Waals heterostructures
    Huang, Le
    Zhong, MianZeng
    Deng, HuiXiong
    Li, Bo
    Wei, ZhongMing
    Li, JingBo
    Wei, SuHuai
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (03)
  • [36] VAN-DER-WAALS INTERACTION OF MEMBRANES
    FENZL, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 97 (02): : 333 - 336
  • [37] van der Waals interaction and wetting transitions
    Fenzl, W
    EUROPHYSICS LETTERS, 2003, 64 (01): : 64 - 69
  • [38] Enhanced van der Waals interaction at interfaces
    Tomas, Marin-Slobodan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (16)
  • [39] Van-der-Waals-interaction constant
    Neundorf, D
    SPECTRAL LINE SHAPES, VOL 9 - 13TH ICSLS, 1997, (386): : 231 - 232
  • [40] van der Waals interaction of excited media
    Sherkunov, Y
    PHYSICAL REVIEW A, 2005, 72 (05):