Dispersiveness, higher stability and controllability of linear control systems on the Heisenberg group

被引:0
|
作者
Souza, Josiney A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Math, BR-87020900 Maringa, PR, Brazil
关键词
Linear control system; Heisenberg group; Dispersiveness; Absolute stability; Controllability; CONTROL AFFINE SYSTEMS; LYAPUNOV STABILITY; NILPOTENT;
D O I
10.1007/s00498-024-00401-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents sufficient conditions for dispersiveness of linear control systemns on the Heisenberg group. The dispersiveness implies the absolute stability of the orbits, which means stability of all orders. Necessary conditions for the existence of a control set are derived. A linear control system is determined by a derivation D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document} of the Heisenberg algebra h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {h}}$$\end{document} and invariant vector fields X1,& mldr;,Xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{1},\ldots ,X_{m}$$\end{document}. The main result assures that the system is dispersive with respect to a compact set K in the control range, if the mean limits limtn ->+infinity 1tn integral 0tn & sum;i=1muinsXids\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\lim }\limits _{{t_{n} \rightarrow + \infty }} \frac{1}{{t_{n} }}\int _{0}<^>{{t_{n} }} {\sum \nolimits _{{i = 1}}<^>{m} {u_{i}<^>{n} \left( s \right) X_{i} {\hspace{1.0pt}} ds} } $$\end{document} do not reach the subspace h2+ImD subset of h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {h}}<^>{2}+\textrm{Im}\left( {\mathcal {D}}\right) \subset {\mathfrak {h}}$$\end{document}. Consequently, the system is K-dispersive, if 0 is not an element of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\notin K$$\end{document} and the sum h2+ImD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {h}}<^>{2}+\textrm{Im}\left( {\mathcal {D}}\right) $$\end{document} meets SpanX1,& mldr;,Xm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Span\left\{ X_{1},\ldots ,X_{m}\right\} $$\end{document} trivially. The mean limit criterion is applied to the linear Heisenberg flywheel and other three-dimensional systems.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] STABILITY AND CONTROLLABILITY OF PROCESS-CONTROL SYSTEMS
    HIND, EC
    MECHANICAL ENGINEERING, 1965, 87 (06) : 60 - +
  • [32] Control systems on the Heisenberg group: equivalence and classification
    Bartlett, Catherine E.
    Biggs, Rory
    Remsing, Claudiu C.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (1-2): : 217 - 234
  • [33] One-input linear control systems on the homogeneous spaces of the Heisenberg group - The singular case
    Da Silva, Adriano
    Duman, Okan
    Kizil, Eyup
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 407 : 133 - 152
  • [34] SIMPLIFIED CRITERION FOR CONTROLLABILITY OF LINEAR SYSTEMS WITH DELAY IN CONTROL
    SEBAKHY, O
    BAYOUMI, MM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (04) : 364 - &
  • [35] Local Controllability for Linear Control Systems on Lie Groups
    Fabiana Cardetti
    Dirk Mittenhuber
    Journal of Dynamical and Control Systems, 2005, 11 : 353 - 373
  • [37] Controllability of linear feedback control systems with communication constraints
    Liu, XP
    Wong, WS
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 60 - 65
  • [38] On the Observability and Controllability of Linear Fractional Quantum Control Systems
    Sadek, Lakhlifa
    Chablaoui, Said
    Toukmati, Ahmed
    Sadek, El Mostafa
    Ben Makhlouf, Abdellatif
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [39] Robust controllability of linear systems with multiple delays in control
    Chen, S. -H.
    Chou, F. -I
    Chou, J. -H.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (10): : 1552 - 1556
  • [40] LINEAR-CONTROL SYSTEMS - CONTROLLABILITY WITH CONSTRAINED CONTROLS
    PANDOLFI, L
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (04) : 577 - 585