Enhancing Swin Transformer with Semantic Attention for Explainable Prediction: A Case Study with Lung Cancer CT Images

被引:0
|
作者
Rangnekar, A. [1 ]
Jiang, J. [2 ]
Veeraraghavan, H. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:6580 / 6580
页数:1
相关论文
共 50 条
  • [41] Augmentation method for convolutional neural network that improves prediction performance in the task of classifying primary lung cancer and lung metastasis using CT images
    Usuzaki, Takuma
    Takahashi, Kengo
    Umemiya, Kazuma
    Ishikuro, Mami
    Obara, Taku
    Kamimoto, Masahiro
    Majima, Kazuhiro
    LUNG CANCER, 2021, 160 : 175 - 178
  • [42] Feasibility Study of Deep Learning Based ITV Prediction in Cone Beam CT Images & It's Dosimetric Study of Lung SBRT
    Zhang, S.
    Li, Z.
    Yang, E.
    Li, Y.
    Zhang, L.
    Zheng, X.
    Qiu, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E732 - E733
  • [43] Enhancing Classification Performance of Convolutional Neural Networks for Prostate Cancer Detection on Magnetic Resonance Images: a Study with the Semantic Learning Machine
    Lapa, Paulo
    Goncalves, Ivo
    Rundo, Leonardo
    Castelli, Mauro
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 381 - 382
  • [44] The Study of Geometry and Dosimetry Change for the Target of Lung Cancer On Two CT Images Using Rigid Registration
    Ma, C.
    MEDICAL PHYSICS, 2019, 46 (06) : E632 - E632
  • [45] Automated Interstitial Lung Abnormality Probability Prediction at CT: A Stepwise Machine Learning Approach in the Boston Lung Cancer Study
    Hata, Akinori
    Aoyagi, Kota
    Hino, Takuya
    Kawagishi, Masami
    Wada, Noriaki
    Song, Jiyeon
    Wang, Xinan
    Valtchinov, Vladimir I.
    Nishino, Mizuki
    Muraguchi, Yohei
    Nakatsugawa, Minoru
    Koga, Akihiro
    Sugihara, Naoki
    Ozaki, Masahiro
    Hunninghake, Gary M.
    Tomiyama, Noriyuki
    Li, Yi
    Nakatsugawa, M.
    Christiani, David C.
    Hatabu, Hiroto
    RADIOLOGY, 2024, 312 (03)
  • [46] Deep learning using histological images for gene mutation prediction in lung cancer: a multicentre retrospective study
    Zhao, Yu
    Xiong, Shan
    Ren, Qin
    Wang, Jun
    Li, Min
    Yang, Lin
    Wu, Di
    Tang, Kejing
    Pan, Xiaojie
    Chen, Fengxia
    Wang, Wenxiang
    Jin, Shi
    Liu, Xianling
    Lin, Gen
    Yao, Wenxiu
    Cai, Linbo
    Yang, Yi
    Liu, Jixian
    Wu, Jingxun
    Fu, Wenfan
    Sun, Kai
    Li, Feng
    Cheng, Bo
    Zhan, Shuting
    Wang, Haixuan
    Yu, Ziwen
    Liu, Xiwen
    Zhong, Ran
    Wang, Huiting
    He, Ping
    Zheng, Yongmei
    Liang, Peng
    Chen, Longfei
    Hou, Ting
    Huang, Junzhou
    He, Bing
    Song, Jiangning
    Wu, Lin
    Hu, Chengping
    He, Jianxing
    Yao, Jianhua
    Liang, Wenhua
    LANCET ONCOLOGY, 2025, 26 (01): : 136 - 146
  • [47] CoADS: Cross attention based dual-space graph network for survival prediction of lung cancer using whole slide images
    Zhao, Lu
    Hou, Runping
    Teng, Haohua
    Fu, Xiaolong
    Han, Yuchen
    Zhao, Jun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 236
  • [48] Prediction of Overall Survival of Patients with non-small cell Lung Cancer on the basis of pre-therapeutic CT Images
    Schicht, A.
    Mukherjee, P.
    Zhou, M.
    Lee, E.
    Budach, V.
    Gevaert, O.
    Thieme, A.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2021, 197 (SUPPL 1) : S12 - S13
  • [49] Fusing Multi-Modal PET/CT Images for Automated Prediction of PD-L1 Status in Lung Cancer
    Da-Ano, Ronrick
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [50] Radiomic Prediction of Radiation Pneumonitis on Pretreatment Planning CT Images of Lung Cancer Patients Receiving Stereotactic Body Radiation Therapy
    Hirose, T.
    Arimura, H.
    Ninomiya, K.
    Yoshitake, T.
    Fukunaga, J.
    Shioyama, Y.
    MEDICAL PHYSICS, 2020, 47 (06) : E313 - E313