Neuro-Symbolic Architecture for Experiential Learning in Discrete and Functional Environments

被引:3
|
作者
Kolonin, Anton [1 ,2 ,3 ]
机构
[1] Aigents, Novosibirsk, Russia
[2] SingularityNET Fdn, Amsterdam, Netherlands
[3] Novosibirsk State Univ, Novosibirsk, Russia
来源
关键词
Artificial general intelligence; Cognitive architecture; Domain ontology; Experiential learning; Global feedback; Local feedback; Neurosymbolic integration; Operational space; Reinforcement learning;
D O I
10.1007/978-3-030-93758-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper presents a "horizontal neuro-symbolic integration" approach for artificial general intelligence along with elementary representation-agnostic cognitive architecture and explores its usability under the experiential learning framework for reinforcement learning problem powered by "global feedback".
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [21] NeST: The neuro-symbolic transpiler
    Pfanschilling, Viktor
    Shindo, Hikaru
    Dhami, Devendra Singh
    Kersting, Kristian
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 179
  • [22] The Neuro-Symbolic Code of Perception
    Velik, Rosemarie
    JOURNAL OF COGNITIVE SCIENCE, 2010, 11 (02) : 161 - 180
  • [23] Neuro-Symbolic Regression with Applications
    Makke, Nour
    Chawla, Sanjay
    BIG DATA ANALYTICS IN ASTRONOMY, SCIENCE, AND ENGINEERING, BDA 2022, 2023, 13830 : 38 - 50
  • [24] NSP:: A neuro-symbolic processor
    Burattini, E
    De Gregorio, M
    Ferreira, VMG
    França, FMG
    ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 9 - 16
  • [25] Neuro-Symbolic Reinforcement Learning with First-Order Logic
    Kimura, Daiki
    Ono, Masaki
    Chaudhury, Subhajit
    Kohita, Ryosuke
    Wachi, Akifumi
    Agravante, Don Joven
    Tatsubori, Michiaki
    Munawar, Asim
    Gray, Alexander
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3505 - 3511
  • [26] Deep Explainable Relational Reinforcement Learning: A Neuro-Symbolic Approach
    Hazra, Rishi
    De Raedt, Luc
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 213 - 229
  • [27] SATryrus:: A SAT-based neuro-symbolic architecture for constraint processing
    Lima, PMV
    Morveli-Espinoza, MM
    Pereira, GC
    França, FMG
    HIS 2005: 5th International Conference on Hybrid Intelligent Systems, Proceedings, 2005, : 137 - 142
  • [28] CCN plus : A neuro-symbolic framework for deep learning with requirements
    Giunchiglia, Eleonora
    Tatomir, Alex
    Stoian, Mihaela Catalina
    Lukasiewicz, Thomas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 171
  • [29] Learning Neuro-Symbolic Relational Transition Models for Bilevel Planning
    Chitnis, Rohan
    Silver, Tom
    Tenenbaum, Joshua B.
    Lozano-Perez, Tomas
    Kaelbling, Leslie Pack
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 4166 - 4173
  • [30] Deciphering Raw Data in Neuro-Symbolic Learning with Provable Guarantees
    Tao, Lue
    Huang, Yu-Xuan
    Dai, Wang-Zhou
    Jiang, Yuan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15310 - 15318