Sources and Seasonal Variations of Per- and Polyfluoroalkyl Substances (PFAS) in Surface Snow in the Arctic

被引:0
|
作者
Hartz, William F. [1 ,2 ,3 ,4 ]
Bjornsdotter, Maria K. [4 ,5 ]
Yeung, Leo W. Y. [4 ]
Humby, Jack D. [6 ]
Eckhardt, Sabine [3 ]
Evangeliou, Nikolaos [3 ]
Ericson Jogsten, Ingrid [4 ]
Karrman, Anna [4 ]
Kallenborn, Roland [7 ,8 ]
机构
[1] Univ Oxford, Dept Earth Sci, Oxford OX1 3AN, England
[2] Univ Ctr Svalbard UNIS, Dept Arctic Geol, NO-9171 Svalbard, Norway
[3] NILU, NO-2007 Kjeller, Norway
[4] Orebro Univ, Man Technol Environm Res Ctr MTM, SE-70182 Orebro, Sweden
[5] Inst Environm Assessment & Water Res IDAEA CSIC, Barcelona 08034, Catalonia, Spain
[6] British Antarctic Survey, Ice Dynam & Paleoclimate, Cambridge CB3 0ET, England
[7] Norwegian Univ Life Sci NMBU, Fac Chem Biotechnol & Food Sci KBM, NO-1432 As, Norway
[8] Univ Arctic UArctic, Rovaniemi 96300, Finland
基金
瑞典研究理事会;
关键词
atmospheric deposition; precursors; hydroxylradicals; trifluoroacetic acid; solar flux; GenX; Svalbard; ANNULAR DIFFUSION DENUDER; ATMOSPHERIC CHEMISTRY; OH RADICALS; PERFLUOROALKYL SUBSTANCES; CL ATOMS; PERFLUOROOCTANE SULFONATE; POLYFLUORINATED COMPOUNDS; TRANSPORT; KINETICS; ACIDS;
D O I
10.1021/acs.est.4c08854
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and polyfluoroalkyl substances (PFAS) are persistent anthropogenic contaminants, some of which are toxic and bioaccumulative. Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) can form during the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs), N-alkylated perfluoroalkane sulfonamides (FASAs), and hydrofluorocarbons (HFCs). Since PFCAs and PFSAs will readily undergo wet deposition, snow and ice cores are useful for studying PFAS in the Arctic atmosphere. In this study, 36 PFAS were detected in surface snow around the Arctic island of Spitsbergen during January-August 2019 (i.e., 24 h darkness to 24 h daylight), indicating widespread and chemically diverse contamination, including at remote high elevation sites. Local sources meant some PFAS had concentrations in snow up to 54 times higher in Longyearbyen, compared to remote locations. At a remote high elevation ice cap, where PFAS input was from long-range atmospheric processes, the median deposition fluxes of C2-C11 PFCAs, PFOS and HFPO-DA (GenX) were 7.6-71 times higher during 24 h daylight. These PFAS all positively correlated with solar flux. Together this suggests seasonal light is important to enable photochemistry for their atmospheric formation and subsequent deposition in the Arctic. This study provides the first evidence for the possible atmospheric formation of PFOS and GenX from precursors.
引用
收藏
页码:21817 / 21828
页数:12
相关论文
共 50 条
  • [41] Electrochemical methods for treatment of per- and polyfluoroalkyl substances (PFAS): A review
    Tan, Benjamin Tze-Wei
    Abu Bakar, Noor Hana Hanif
    Lee, Hooi Ling
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [42] Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)-A review
    Al Amin, Md
    Sobhani, Zahra
    Liu, Yanju
    Dharmaraja, Raja
    Chadalavada, Sreenivasulu
    Naidu, Ravi
    Chalker, Justin M.
    Fang, Cheng
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2020, 19
  • [43] Hair determination of per- and polyfluoroalkyl substances (PFAS) in the Italian population
    Piva, E.
    Giorgetti, A.
    Ioime, P.
    Morini, L.
    Freni, F.
    Lo Faro, F.
    Pirani, F.
    Montisci, M.
    Fais, P.
    Pascali, J. P.
    TOXICOLOGY, 2021, 458
  • [44] Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment
    Zheng, Guomao
    Boor, Brandon E.
    Schreder, Erika
    Salamova, Amina
    ENVIRONMENTAL POLLUTION, 2020, 258
  • [45] Detection of Per- and Polyfluoroalkyl Substances (PFAS) by Interrupted Energy Transfer
    Concellon, Alberto
    Swager, Timothy M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (47)
  • [46] Per- and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk
    van Gerwen, Maaike
    Colicino, Elena
    Guan, Haibin
    Dolios, Georgia
    Nadkarni, Girish N.
    Vermeulen, Roel C. H.
    Wolff, Mary S.
    Arora, Manish
    Genden, Eric M.
    Petrick, Lauren M.
    EBIOMEDICINE, 2023, 97
  • [47] Removing per- and polyfluoroalkyl substances (PFAS) in water by foam fractionation
    Wang, Yifei
    Ji, Yuqing
    Tishchenko, Viktor
    Huang, Qingguo
    CHEMOSPHERE, 2023, 311
  • [48] Trends in the Regulation of Per- and Polyfluoroalkyl Substances (PFAS): A Scoping Review
    Brennan, Nicole Marie
    Evans, Abigail Teresa
    Fritz, Meredith Kate
    Peak, Stephanie Allison
    von Holst, Haley Elizabeth
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (20)
  • [49] Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust
    Savvaides, Tina
    Koelmel, Jeremy P.
    Zhou, Yakun
    Lin, Elizabeth Z.
    Stelben, Paul
    Aristizabal-Henao, Juan J.
    Bowden, John A.
    Pollitt, Krystal J. Godri
    CURRENT ENVIRONMENTAL HEALTH REPORTS, 2021, 8 (04) : 323 - 335
  • [50] Managing and treating per- and polyfluoroalkyl substances (PFAS) in membrane concentrates
    Tow, Emily W.
    Ersan, Mahmut Selim
    Kum, Soyoon
    Lee, Tae
    Speth, Thomas F.
    Owen, Christine
    Bellona, Christopher
    Nadagouda, Mallikarjuna N.
    Mikelonis, Anne M.
    Westerhoff, Paul
    Mysore, Chandra
    Frenkel, Val S.
    Desilva, Viraj
    Walker, W. Shane
    Safulko, Andrew K.
    Ladner, David A.
    AWWA WATER SCIENCE, 2021, 3 (05):