Fast standard error estimation for joint models of longitudinal and time-to-event data based on stochastic EM algorithms

被引:0
|
作者
Yu, Tingting [1 ,2 ]
Wu, Lang [3 ]
Bosch, Ronald J. [4 ]
Smith, Davey M. [5 ]
Wang, Rui [1 ,2 ,4 ]
机构
[1] Harvard Pilgrim Healthcare Inst, Dept Populat Med, 401 Pk Dr, Boston, MA 02215 USA
[2] Harvard Med Sch, 401 Pk Dr, Boston, MA 02215 USA
[3] Univ British Columbia, Dept Stat, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
[4] Harvard TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[5] Univ Calif San Diego, Dept Med, Div Infect Dis & Global Publ Hlth, La Jolla, CA 92037 USA
关键词
Cox PH; nonlinear mixed-effects; semi-parametric; standard error; stochastic EM; MIXED-EFFECTS MODELS; LIKELIHOOD APPROACH; SAEM ALGORITHM; SURVIVAL; IMPLEMENTATION;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Maximum likelihood inference can often become computationally intensive when performing joint modeling of longitudinal and time-to-event data, due to the intractable integrals in the joint likelihood function. The computational challenges escalate further when modeling HIV-1 viral load data, owing to the nonlinear trajectories and the presence of left-censored data resulting from the assay's lower limit of quantification. In this paper, for a joint model comprising a nonlinear mixed-effect model and a Cox Proportional Hazards model, we develop a computationally efficient Stochastic EM (StEM) algorithm for parameter estimation. Furthermore, we propose a novel technique for fast standard error estimation, which directly estimates standard errors from the results of StEM iterations and is broadly applicable to various joint modeling settings, such as those containing generalized linear mixed-effect models, parametric survival models, or joint models with more than two submodels. We evaluate the performance of the proposed methods through simulation studies and apply them to HIV-1 viral load data from six AIDS Clinical Trials Group studies to characterize viral rebound trajectories following the interruption of antiretroviral therapy (ART), accounting for the informative duration of off-ART periods.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Joint models for multiple longitudinal processes and time-to-event outcome
    Yang, Lili
    Yu, Menggang
    Gao, Sujuan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (18) : 3682 - 3700
  • [22] Bayesian Change-Point Joint Models for Multivariate Longitudinal and Time-to-Event Data
    Chen, Jiaqing
    Huang, Yangxin
    Tang, Nian-Sheng
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (02): : 227 - 241
  • [23] Bayesian design of clinical trials using joint models for longitudinal and time-to-event data
    Xu, Jiawei
    Psioda, Matthew A.
    Ibrahim, Joseph G.
    BIOSTATISTICS, 2022, 23 (02) : 591 - 608
  • [24] Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    STATISTICAL MODELLING, 2021, 21 (1-2) : 161 - 181
  • [25] Editorial "Joint modeling of longitudinal and time-to-event data and beyond"
    Suarez, Carmen Cadarso
    Klein, Nadja
    Kneib, Thomas
    Molenberghs, Geert
    Rizopoulos, Dimitris
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1101 - 1103
  • [26] Joint analysis of multivariate longitudinal, imaging, and time-to-event data
    Zhou, Xiaoxiao
    Song, Xinyuan
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (04) : 921 - 934
  • [27] Joint longitudinal and time-to-event cure models for the assessment of being cured
    Barbieri, Antoine
    Legrand, Catherine
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (04) : 1256 - 1270
  • [28] Reflection on modern methods: Dynamic prediction using joint models of longitudinal and time-to-event data
    Andrinopoulou, Eleni-Rosalina
    Harhay, Michael O.
    Ratcliffe, Sarah J.
    Rizopoulos, Dimitris
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 (05) : 1731 - 1743
  • [29] The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC
    Rizopoulos, Dimitris
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (07): : 1 - 46
  • [30] Review and Comparison of Computational Approaches for Joint Longitudinal and Time-to-Event Models
    Furgal, Allison K. C.
    Sen, Ananda
    Taylor, Jeremy M. G.
    INTERNATIONAL STATISTICAL REVIEW, 2019, 87 (02) : 393 - 418