THE NORDHAUS-GADDUM-TYPE INEQUALITIES FOR THE NIRMALA INDICES

被引:0
|
作者
Kumar, Virendra [1 ]
Das, Shibsankar [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, Uttar Pradesh, India
关键词
Degree-based topological indices; Nirmala index; First inverse Nirmala index; Second inverse Nirmala index; Nordhaus-Gaddum-type inequalities;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nowadays, deducing the bounds and relations between known topological indices is an interesting tool in Chemical Graph Theory (CGT). This article investigates the mathematical properties of the recently defined Nirmala indices in terms of some graph invariants. At the outset, we establish some mathematical relations between the Nirmala indices (Nirmala index, first and second inverse Nirmala indices) and other well-established degree-based topological indices. Then, some Nordhaus-Gaddum-type inequalities for the combination of the Nirmala indices of a graph and its complement are obtained.
引用
收藏
页码:120 / 136
页数:17
相关论文
共 50 条
  • [31] Nordhaus-Gaddum-type theorem for Wiener index of graphs when decomposing into three parts
    Li, Daobin
    Wu, Baoyindureng
    Yang, Xunuan
    An, Xinhui
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1594 - 1600
  • [32] NORDHAUS-GADDUM TYPE RELATIONS FOR SOME TOPOLOGICAL INDICES
    Kureethara, J., V
    Majhi, B. K.
    Mahalank, P.
    Cangul, I. N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (01): : 183 - 193
  • [33] Nordhaus–Gaddum type inequalities for some distance-based indices of bipartite molecular graphs
    Wei Gao
    Juan Luis García Guirao
    Hualong Wu
    Journal of Mathematical Chemistry, 2020, 58 : 1345 - 1352
  • [34] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 57 - 72
  • [36] Nordhaus-Gaddum type inequalities for some distance-based indices of bipartite molecular graphs
    Gao, Wei
    Garcia Guirao, Juan Luis
    Wu, Hualong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (07) : 1345 - 1352
  • [37] Nordhaus-Gaddum type inequalities of the second Aα-eigenvalue of a graph
    Chen, Yuanyuan
    Li, Dan
    Meng, Jixiang
    Linear Algebra and Its Applications, 2020, 602 : 57 - 72
  • [38] Nordhaus-Gaddum inequalities for domination in graphs
    Harary, F
    Haynes, TW
    DISCRETE MATHEMATICS, 1996, 155 (1-3) : 99 - 105
  • [39] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470
  • [40] A note on Nordhaus-Gaddum inequalities for domination
    Shan, EF
    Dang, CY
    Kang, LY
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (01) : 83 - 85