Variational multiple shooting for Bayesian ODEs with Gaussian processes

被引:0
|
作者
Hegde, Pashupati [1 ]
Yildiz, Cagatay [1 ]
Lahdesmaki, Harri [1 ]
Kaski, Samuel [1 ]
Heinonen, Markus [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
关键词
PARAMETER-ESTIMATION; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent machine learning advances have proposed black-box estimation of unknown continuous-time system dynamics directly from data. However, earlier works are based on approximative solutions or point estimates. We propose a novel Bayesian nonparametric model that uses Gaussian processes to infer posteriors of unknown ODE systems directly from data. We derive sparse variational inference with decoupled functional sampling to represent vector field posteriors. We also introduce a probabilistic shooting augmentation to enable efficient inference from arbitrarily long trajectories. The method demonstrates the benefit of computing vector field posteriors, with predictive uncertainty scores outperforming alternative methods on multiple ODE learning tasks.
引用
收藏
页码:790 / 799
页数:10
相关论文
共 50 条
  • [31] Spatio-Temporal Variational Gaussian Processes
    Hamelijnck, Oliver
    Wilkinson, William J.
    Loppi, Niki A.
    Solin, Arno
    Damoulas, Theodoros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [32] Learning from crowds with variational Gaussian processes
    Ruiz, Pablo
    Morales-Alvarez, Pablo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    PATTERN RECOGNITION, 2019, 88 : 298 - 311
  • [33] Variational Gaussian Processes: A Functional Analysis View
    Wild, Veit
    Wynne, George
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [34] How to Encode Dynamic Gaussian Bayesian Networks as Gaussian Processes?
    Hartwig, Mattis
    Moeller, Ralf
    AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 371 - 382
  • [35] A Modified Multiple Shooting Algorithm for Parameter Estimation in ODEs Using Adjoint Sensitivity Analysis
    Aydogmus, Ozgur
    Tor, Ali Hakan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 390
  • [36] Using Gaussian Processes in Bayesian Robot Programming
    Aznar, Fidel
    Pujol, Francisco A.
    Pujol, Mar
    Rizo, Ramon
    DISTRIBUTED COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS, SOFT COMPUTING, AND AMBIENT ASSISTED LIVING, PT II, PROCEEDINGS, 2009, 5518 : 547 - +
  • [37] Transfer Learning with Gaussian Processes for Bayesian Optimization
    Tighineanu, Petru
    Skubch, Kathrin
    Baireuther, Paul
    Reiss, Attila
    Berkenkamp, Felix
    Vinogradska, Julia
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 6152 - 6181
  • [38] Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
    Samo, Yves-Laurent Kom
    Roberts, Stephen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2227 - 2236
  • [39] BAYESIAN DECONVOLUTION OF BERNOULLI-GAUSSIAN PROCESSES
    LAVIELLE, M
    SIGNAL PROCESSING, 1993, 33 (01) : 67 - 79
  • [40] Bayesian Gaussian Processes for Identifying the Deteriorating Patient
    Colopy, Glen Wright
    Pimentel, Marco A. F.
    Roberts, Stephen J.
    Clifton, David A.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 5311 - 5314