EMPLOYING THE SOIL DATA CUBE AND DIGITAL SOIL MAPPING TECHNIQUES FOR NATIONAL TOPSOIL PREDICTIONS OF SOIL ORGANIC CARBON AND CLAY CONTENT OVER THE LITHUANIAN GRASSLANDS

被引:0
|
作者
Samarinas, Nikiforos [1 ,2 ,3 ]
Tsakiridis, Nikolaos L. [1 ,2 ,3 ]
Kalopesal, Eleni [1 ,2 ]
Zalidis, George C. [3 ]
机构
[1] Aristotle Univ Thessaloniki, Spect, SpectraLab Grp, Lab Remote Sensing, Thermi 57001, Greece
[2] Aristotle Univ Thessaloniki, GIS, Sch Agr, Thermi 57001, Greece
[3] Interbalkan Environm Ctr Green Innovat Hub, 18 Loutron Str, Lagadas 57200, Greece
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
machine learning; big data; artificial intelligence; soil health; soil organic carbon;
D O I
10.1109/IGARSS53475.2024.10642615
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Grasslands store a large fraction of terrestrial carbon, but are susceptible to degradation from anthropogenic disturbances and climatic changes. Soil monitoring can aid in conserving their ecosystem services. To overcome limitations posed by existing soil maps (e.g., low spatial resolution), we leverage the Soil Data Cube and Digital Soil Mapping techniques, to develop a cloud-optimized pipeline for large-scale soil monitoring using open access Copernicus data. In particular, we employ data from the LUCAS topsoil database, ERA5 climate data from the Copernicus Climate Data Store, and the EU-DEM from the Copernicus Land Monitoring Service. Using Recursive Feature Elimination and the Random Forest algorithm, the methodology achieves an RMSE of 49.1 g C / kg and an R-2 of 0.66 for topsoil Organic Carbon, and an RMSE of 52.1 g / kg with an R-2 of 0.66 for topsoil Clay content. Our method enhances spatio-temporal representativeness and reliability, aligning with the European Union's policies like the Common Agricultural Policy, the new green deal, and ecoschemes. The outcomes of this study are the production of high-resolution soil maps tailored to Lithuanian grasslands. These advancements in soil health monitoring empower more effective and sustainable soil management practices.
引用
收藏
页码:1585 / 1589
页数:5
相关论文
共 50 条
  • [31] The effect of different artificial grasslands on the soil organic carbon content in a degraded land
    Pang, Zhuo
    Sun, Tiejun
    Wu, Juying
    Kan, Haiming
    Hu, Wei
    Li, Xiaona
    Jian, Junyi
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (IFEESD), 2016, 75 : 1061 - 1064
  • [32] Digital mapping of soil organic carbon using remote sensing data: A systematic review
    Pouladi, Nastaran
    Gholizadeh, Asa
    Khosravi, Vahid
    Boruvka, Lubos
    CATENA, 2023, 232
  • [33] Satellite data integration for soil clay content modelling at a national scale
    Loiseau, T.
    Chen, S.
    Mulder, V. L.
    Dobarco, M. Roman
    Richer-de-Forges, A. C.
    Lehmann, S.
    Bourennane, H.
    Saby, N. P. A.
    Martin, M. P.
    Vaudour, E.
    Gomez, C.
    Lagacherie, P.
    Arrouays, D.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 82
  • [34] Soil organic matter and clay predictions by laboratory spectroscopy: Data spatial correlation
    da Silva-Sangoi, Daniely Vaz
    Horst, Taciara Zborowski
    Moura-Bueno, Jean Michel
    Diniz Dalmolin, Ricardo Simao
    Sebem, Elodio
    Gebler, Luciano
    Santos, Marcio da Silva
    GEODERMA REGIONAL, 2022, 28
  • [35] Relevance of the organic carbon to clay ratio as a national soil health indicator
    Rabot, Eva
    Saby, Nicolas P. A.
    Martin, Manuel P.
    Barre, Pierre
    Chenu, Claire
    Cousin, Isabelle
    Arrouays, Dominique
    Angers, Denis
    Bispo, Antonio
    GEODERMA, 2024, 443
  • [36] Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects
    Castaldi, Abio
    Chabrillat, Sabine
    Don, Axel
    van Wesemael, Bas
    REMOTE SENSING, 2019, 11 (18)
  • [37] A Comprehensive Evaluation of Machine Learning Algorithms for Digital Soil Organic Carbon Mapping on a National Scale
    Radocaj, Dorijan
    Jug, Danijel
    Jug, Irena
    Jurisic, Mladen
    APPLIED SCIENCES-BASEL, 2024, 14 (21):
  • [38] Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran
    Taghizadeh-Mehrjardi, R.
    Nabiollahi, K.
    Kerry, R.
    GEODERMA, 2016, 266 : 98 - 110
  • [39] USING LEGACY SOIL DATA FOR STANDARDIZING PREDICTIONS OF TOPSOIL CLAY CONTENT OBTAINED FROM VNIR/SWIR HYPERSPECTRAL AIRBORNE IMAGES.
    Gomez, C.
    Gholizadeh, A.
    Boruvka, L.
    Lagacherie, P.
    ISPRS GEOSPATIAL WEEK 2015, 2015, 40-3 (W3): : 439 - 444
  • [40] Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture
    Hamzehpour, Nikou
    Shafizadeh-Moghadam, Hossein
    Valavi, Roozbeh
    CATENA, 2019, 182