Lucas congruences using modular forms

被引:0
|
作者
Beukers, Frits [1 ]
Tsai, Wei-Lun [2 ]
Ye, Dongxi [3 ]
机构
[1] Univ Utrecht, Utrecht, Netherlands
[2] Univ South Carolina, Dept Math, Columbia, SC USA
[3] Sun Yat sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
D O I
10.1112/blms.13182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we prove that many Ap & eacute;ry-like sequences arising from modular forms satisfy the Lucas congruences modulo any prime. As an implication, we completely affirm four conjectural Lucas congruences that were recently posed by S. Cooper and reinterpret a number of known results.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条
  • [41] Congruences for Taylor expansions of quantum modular forms
    Pavel Guerzhoy
    Zachary A Kent
    Larry Rolen
    Research in the Mathematical Sciences, 1
  • [42] Congruences for modular forms and generalized Frobenius partitions
    Jameson, Marie
    Wieczorek, Maggie
    RAMANUJAN JOURNAL, 2020, 52 (03): : 541 - 553
  • [43] Congruences for modular forms of non-positive weight
    Cooper, Yaim
    Wage, Nicholas
    Wang, Irena
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (01) : 1 - 13
  • [44] Hecke grids and congruences for weakly holomorphic modular forms
    Ahlgren, Scott
    Andersen, Nickolas
    RAMANUJAN 125, 2014, 627 : 1 - 16
  • [45] Congruences between modular forms modulo prime powers
    Camporino, Maximilian
    Pacetti, Ariel
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1609 - 1643
  • [46] CONGRUENCES AMONG POWER SERIES COEFFICIENTS OF MODULAR FORMS
    Moy, Richard
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1447 - 1474
  • [47] Linear relations and congruences for the coefficients of Drinfeld modular forms
    SoYoung Choi
    Israel Journal of Mathematics, 2008, 165 : 93 - 101
  • [48] The Shimura lift and congruences for modular forms with the eta multiplier
    Ahlgren, Scott
    Andersen, Nickolas
    Dicks, Robert
    ADVANCES IN MATHEMATICS, 2024, 447
  • [49] Ramanujan type congruences for modular forms of several variables
    Toshiyuki Kikuta
    Shoyu Nagaoka
    The Ramanujan Journal, 2013, 32 : 143 - 157
  • [50] Modular forms with large coefficient fields via congruences
    Victor Dieulefait, Luis
    Jimenez Urroz, Jorge
    Ribet, Kenneth Alan
    RESEARCH IN NUMBER THEORY, 2015, 1 (01)