Noisy matrix completion for longitudinal data with subject- and time-specific covariates

被引:0
|
作者
Sun, Zhaohan [1 ]
Zhu, Yeying [1 ]
Dubin, Joel [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coordinate gradient descent; inverse probability weighting; missing data; INCOMPLETE DATA; INFERENCE; LIKELIHOOD;
D O I
10.1002/cjs.70002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the imputation of missing responses in a longitudinal dataset via matrix completion. We propose a fixed-effect, longitudinal, low-rank model that incorporates both subject-specific and time-specific covariates. To solve the optimization problem, a two-step optimization algorithm is proposed, which provides good statistical properties for the estimation of the fixed effects and the low-rank term. In a theoretical investigation, the non-asymptotic error bounds on the fixed effects and low-rank term are presented. We illustrate the finite-sample performance of the proposed algorithm via simulation studies, and apply our method to a power plant SO2$$ {}_2 $$ emissions dataset in which the monthly recorded amounts of emissions data on monitors are subject to missingness. Cet article aborde l'imputation des donn & eacute;es manquantes dans un contexte longitudinal par des techniques de compl & eacute;tion de matrice. Les auteurs proposent un mod & egrave;le longitudinal de rang faible & agrave; effets fixes qui prend en compte tant les covariables propres aux sujets que celles li & eacute;es au temps. Pour r & eacute;soudre le probl & egrave;me d'optimisation associ & eacute;, ils d & eacute;veloppent un algorithme en deux & eacute;tapes offrant de bonnes propri & eacute;t & eacute;s statistiques pour l'estimation conjointe des effets fixes et du terme de rang faible. Leur analyse th & eacute;orique & eacute;tablit des bornes d'erreur non asymptotiques pour ces deux composantes. La performance de l'algorithme est & eacute;valu & eacute;e & agrave; l'aide d'& eacute;tudes de simulation sur des & eacute;chantillons finis, puis appliqu & eacute;e & agrave; un jeu de donn & eacute;es relatif aux & eacute;missions de SO2$$ {}_2 $$ des centrales & eacute;lectriques, o & ugrave; les mesures mensuelles enregistr & eacute;es pr & eacute;sentent des valeurs manquantes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Correcting for differential depletion of susceptibles in time-to-event data using time-specific propensity scores
    Wyss, Richard
    Gagne, Joshua J.
    Wang, Shirley V.
    Desai, Rishi J.
    Franklin, Jessica M.
    Schneeweiss, Sebastian
    Zhao, Yueqin
    Zhao, Esther H.
    Toh, Sengwee
    Johnson, Margaret
    Fireman, Bruce
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 : 6 - 6
  • [32] The contribution of children's time-specific and longitudinal expressive language skills on developmental trajectories of executive function
    Kuhn, Laura J.
    Willoughby, Michael T.
    Vernon-Feagans, Lynne
    Blair, Clancy B.
    JOURNAL OF EXPERIMENTAL CHILD PSYCHOLOGY, 2016, 148 : 20 - 34
  • [33] Subject specific and population average models for binary longitudinal data: a tutorial
    Szmaragd, Camille
    Clarke, Paul
    Steele, Fiona
    LONGITUDINAL AND LIFE COURSE STUDIES, 2013, 4 (02): : 147 - 165
  • [34] Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity
    Pallares, Vicente
    Insabato, Andrea
    Sanjuan, Ana
    Kuehn, Simone
    Mantini, Dante
    Deco, Gustavo
    Gilson, Matthieu
    NEUROIMAGE, 2018, 178 : 238 - 254
  • [35] Improved methods for the marginal analysis of longitudinal data in the presence of time-dependent covariates
    Chen, I-Chen
    Westgate, Philip M.
    STATISTICS IN MEDICINE, 2017, 36 (16) : 2533 - 2546
  • [36] Joint modeling of failure time data with transformation model and longitudinal data when covariates are measured with errors
    Xi-ming Cheng
    Qi Gong
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 663 - 672
  • [37] Marginal quantile regression for longitudinal data analysis in the presence of time-dependent covariates
    Chen, I-Chen
    Westgate, Philip M.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2021, 17 (02): : 267 - 282
  • [38] Joint Modeling of Failure Time Data with Transformation Model and Longitudinal Data When Covariates are Measured with Errors
    Xi-ming CHENG
    Qi GONG
    Acta Mathematicae Applicatae Sinica, 2012, (04) : 663 - 672
  • [39] Multiscale Adaptive Marginal Analysis of Longitudinal Neuroimaging Data with Time-Varying Covariates
    Skup, Martha
    Zhu, Hongtu
    Zhang, Heping
    BIOMETRICS, 2012, 68 (04) : 1083 - 1092
  • [40] EMPIRICAL LIKELIHOOD APPROACH FOR LONGITUDINAL DATA WITH MISSING VALUES AND TIME-DEPENDENT COVARIATES
    Yan Zhang
    Weiping Zhang
    Xiao Guo
    Annals of Applied Mathematics, 2016, 32 (02) : 200 - 220