Noisy matrix completion for longitudinal data with subject- and time-specific covariates

被引:0
|
作者
Sun, Zhaohan [1 ]
Zhu, Yeying [1 ]
Dubin, Joel [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coordinate gradient descent; inverse probability weighting; missing data; INCOMPLETE DATA; INFERENCE; LIKELIHOOD;
D O I
10.1002/cjs.70002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the imputation of missing responses in a longitudinal dataset via matrix completion. We propose a fixed-effect, longitudinal, low-rank model that incorporates both subject-specific and time-specific covariates. To solve the optimization problem, a two-step optimization algorithm is proposed, which provides good statistical properties for the estimation of the fixed effects and the low-rank term. In a theoretical investigation, the non-asymptotic error bounds on the fixed effects and low-rank term are presented. We illustrate the finite-sample performance of the proposed algorithm via simulation studies, and apply our method to a power plant SO2$$ {}_2 $$ emissions dataset in which the monthly recorded amounts of emissions data on monitors are subject to missingness. Cet article aborde l'imputation des donn & eacute;es manquantes dans un contexte longitudinal par des techniques de compl & eacute;tion de matrice. Les auteurs proposent un mod & egrave;le longitudinal de rang faible & agrave; effets fixes qui prend en compte tant les covariables propres aux sujets que celles li & eacute;es au temps. Pour r & eacute;soudre le probl & egrave;me d'optimisation associ & eacute;, ils d & eacute;veloppent un algorithme en deux & eacute;tapes offrant de bonnes propri & eacute;t & eacute;s statistiques pour l'estimation conjointe des effets fixes et du terme de rang faible. Leur analyse th & eacute;orique & eacute;tablit des bornes d'erreur non asymptotiques pour ces deux composantes. La performance de l'algorithme est & eacute;valu & eacute;e & agrave; l'aide d'& eacute;tudes de simulation sur des & eacute;chantillons finis, puis appliqu & eacute;e & agrave; un jeu de donn & eacute;es relatif aux & eacute;missions de SO2$$ {}_2 $$ des centrales & eacute;lectriques, o & ugrave; les mesures mensuelles enregistr & eacute;es pr & eacute;sentent des valeurs manquantes.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Joint modeling of survival time and longitudinal data with subject-specific changepoints in the covariates
    Tapsoba, Jean de Dieu
    Lee, Shen-Ming
    Wang, C. Y.
    STATISTICS IN MEDICINE, 2011, 30 (03) : 232 - 249
  • [2] A Close Look at Matrix Completion with Noisy Data
    Yang, Ke
    Wu, Shuai
    Wang, Kai
    Wang, Yi
    Wang, Chaofei
    2022 7TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING, ICRAE, 2022, : 358 - 364
  • [3] Modeling Longitudinal Data Using Matrix Completion
    Kidzinski, Lukasz
    Hastie, Trevor
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 551 - 566
  • [4] Discrete-time survival data with longitudinal covariates
    Wen, Chi-Chung
    Chen, Yi-Hau
    STATISTICS IN MEDICINE, 2020, 39 (29) : 4372 - 4385
  • [5] Regression analysis of overdispersed correlated count data with subject specific covariates
    Solis-Trapala, IL
    Farewell, VT
    STATISTICS IN MEDICINE, 2005, 24 (16) : 2557 - 2575
  • [6] A closure test for time-specific capture-recapture data
    Stanley, TR
    Burnham, KP
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1999, 6 (02) : 197 - 209
  • [7] A closure test for time-specific capture-recapture data
    Thomas R. Stanley
    Kenneth P. Burnham
    Environmental and Ecological Statistics, 1999, 6 : 197 - 209
  • [8] The analysis of binary longitudinal data with time-dependent covariates
    Guerra, Matthew W.
    Shults, Justine
    Amsterdam, Jay
    Ten-Have, Thomas
    STATISTICS IN MEDICINE, 2012, 31 (10) : 931 - 948
  • [9] THE ANALYSIS OF BINARY LONGITUDINAL DATA WITH TIME-INDEPENDENT COVARIATES
    ZEGER, SL
    LIANG, KY
    SELF, SG
    BIOMETRIKA, 1985, 72 (01) : 31 - 38
  • [10] Modeling the random effects covariance matrix for longitudinal data with covariates measurement error
    Hoque, Md Erfanul
    Torabi, Mahmoud
    STATISTICS IN MEDICINE, 2018, 37 (28) : 4167 - 4184