MLOps as Enabler of Trustworthy AI

被引:0
|
作者
Billeter, Yann [1 ]
Denzel, Philipp [1 ]
Chavarriaga, Ricardo [1 ]
Forster, Oliver [1 ]
Schilling, Frank-Peter [1 ]
Brunner, Stefan [2 ]
Frischknecht-Gruber, Carmen [2 ]
Reif, Monika [2 ]
Weng, Joanna [2 ]
机构
[1] Zurich Univ Appl Sci ZHAW, Ctr AI CAI, Winterthur, Switzerland
[2] Zurich Univ Appl Sci ZHAW, Inst Appl Math & Phys IAMP, Winterthur, Switzerland
关键词
AI; MLOps; explainability; trustworthiness; MODEL;
D O I
10.1109/SDS60720.2024.00013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As Artificial Intelligence (AI) systems are becoming ever more capable of performing complex tasks, their prevalence in industry, as well as society, is increasing rapidly. Adoption of AI systems requires humans to trust them, leading to the concept of trustworthy AI which covers principles such as fairness, reliability, explainability, or safety. Implementing AI in a trustworthy way is encouraged by newly developed industry norms and standards, and will soon be enforced by legislation such as the EU AI Act (EU AIA). We argue that Machine Learning Operations (MLOps), a paradigm which covers best practices and tools to develop and maintain AI and Machine Learning (ML) systems in production reliably and efficiently, provides a guide to implementing trustworthiness into the AI development and operation lifecycle. In addition, we present an implementation of a framework based on various MLOps tools which enables verification of trustworthiness principles using the example of a computer vision ML model.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 50 条
  • [31] Trustworthy AI'21: the 1st International Workshop on Trustworthy AI for Multimedia Computing
    Furon, Teddy
    Liu, Jingen
    Rawat, Yogesh
    Zhang, Wei
    Zhao, Qi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5708 - 5709
  • [32] AI for marketing: Enabler? Engager? Ersatz?
    Sreedhar Madhavaram
    Radha Appan
    AMS Review, 2024, 14 (3) : 258 - 277
  • [33] AI Augmentation for Trustworthy AI: Augmented Robot Teleoperation
    Marino, Daniel L.
    Grandio, Javier
    Wickramasinghe, Chathurika S.
    Schroeder, Kyle
    Bourne, Keith
    Filippas, Afroditi, V
    Manic, Milos
    2020 13TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2020, : 155 - 161
  • [34] Trustworthy AI Means Public AI [Last Word]
    Schneier, Bruce
    IEEE SECURITY & PRIVACY, 2023, 21 (06) : 95 - 96
  • [35] A Trustworthy SIoT Aware Mechanism as an Enabler for Citizen Services in Smart Cities
    Rehman, Ateeq Ur
    Naqvi, Rizwan Ali
    Rehman, Abdul
    Paul, Anand
    Sadiq, Muhammad Tariq
    Hussain, Dildar
    ELECTRONICS, 2020, 9 (06) : 1 - 19
  • [36] Filling gaps in trustworthy development of AIFilling gaps in trustworthy development of AI
    Avin, Shahar
    Belfield, Haydn
    Brundage, Miles
    Krueger, Gretchen
    Wang, Jasmine
    Weller, Adrian
    Anderljung, Markus
    Krawczuk, Igor
    Krueger, David
    Lebensold, Jonathan
    Maharaj, Tegan
    Zilberman, Noa
    SCIENCE, 2021, 374 (6573) : 1327 - 1329
  • [37] Trustworthy AI-Part II
    Mariani, Riccardo
    Rossi, Francesca
    Cucchiara, Rita
    Pavone, Marco
    Simkin, Barnaby
    Koene, Ansgar
    Papenbrock, Jochen
    COMPUTER, 2023, 56 (05) : 13 - 16
  • [38] Trustworthy AI and the Logics of Intersectional Resistance
    Knowles, Bran
    Fledderjohann, Jasmine
    Richards, John T.
    Varshney, Kush R.
    PROCEEDINGS OF THE 6TH ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2023, 2023, : 172 - 182
  • [39] AI Trustworthy Challenges in Drug Discovery
    Ahadian, Pegah
    Guan, Qiang
    TRUSTWORTHY ARTIFICIAL INTELLIGENCE FOR HEALTHCARE, TAI4H 2024, 2024, 14812 : 1 - 12
  • [40] Trustworthy AI-Part 1
    Mariani, Riccardo
    Rossi, Francesca
    Cucchiara, Rita
    Pavone, Marco
    Simkin, Barnaby
    Koene, Ansgar
    Papenbrock, Jochen
    COMPUTER, 2023, 56 (02) : 14 - 18