AlphaIntellect at SemEval-2024 Task 6: Detection of Hallucinations in Generated Text

被引:0
|
作者
Choudhury, Sohan [1 ]
Saha, Priyam [2 ]
Ray, Subharthi [2 ]
Das, Shankha Shubhra [2 ]
Das, Dipankar [2 ]
机构
[1] KIIT, Bhubaneswar, India
[2] Jadavpur Univ, Kolkata, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One major issue in natural language generation (NLG) models is detecting hallucinations (semantically inaccurate outputs). This study investigates a hallucination detection system designed for three distinct NLG tasks: definition modeling, paraphrase generation, and machine translation. The system uses feedforward neural networks for classification and SentenceTransformer models for similarity scores and sentence embeddings. Even though the SemEval-2024 benchmark is showing good results, there is still room for improvement. Promising paths towards improving performance include considering multi-task learning methods, including strategies for handling out-of-domain data and minimizing bias, and investigating sophisticated architectures.
引用
收藏
页码:952 / 958
页数:7
相关论文
共 50 条
  • [11] FI Group at SemEval-2024 Task 8: A Syntactically Motivated Architecture for Multilingual Machine-Generated Text Detection
    Ben-Fares, Maha
    Zaratiana, Urchade
    Hernandez, Simon D.
    Holat, Pierre
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1166 - 1171
  • [12] TrustAI at SemEval-2024 Task 8: A Comprehensive Analysis of Multi-domain Machine Generated Text Detection Techniques
    Urlana, Ashok
    Saibewar, Aditya
    Garlapati, Bala Mallikarjunarao
    Kumar, Charaka Vinayak
    Singh, Ajeet Kumar
    Chalamala, Srinivasa Rao
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 927 - 934
  • [13] KInIT at SemEval-2024 Task 8: Fine-tuned LLMs for Multilingual Machine-Generated Text Detection
    Spiegel, Michal
    Macko, Dominik
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 558 - 564
  • [14] SmurfCat at SemEval-2024 Task 6: Leveraging Synthetic Data for Hallucination Detection
    Rykov, Elisei
    Shishkina, Yana
    Petrushina, Kseniia
    Titova, Kseniia
    Petrakov, Sergey
    Panchenko, Alexander
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 869 - 880
  • [15] BrainLlama at SemEval-2024 Task 6: Prompting Llama to detect hallucinations and related observable overgeneration mistakes
    Siino, Marco
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 82 - 87
  • [16] PetKaz at SemEval-2024 Task 8: Can Linguistics Capture the Specifics of LLM-generated Text?
    Petukhova, Kseniia
    Kazakov, Roman
    Kochmar, Ekaterina
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1140 - 1147
  • [17] MasonTigers at SemEval-2024 Task 8: Performance Analysis of Transformer-based Models on Machine-Generated Text Detection
    Puspo, Sadiya Sayara Chowdhury
    Raihan, Md Nishat
    Goswami, Dhiman
    Bin Emran, Al Nahian
    Ganguly, Amrita
    Uzuner, Ozlem
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1364 - 1372
  • [18] SemEval-2024 Task 8: Weighted Layer Averaging RoBERTa for Black-Box Machine-Generated Text Detection
    Datta, Ayan
    Chandramania, Aryan
    Mamidi, Radhika
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1623 - 1626
  • [19] NootNoot at SemEval-2024 Task 8: Fine-tuning Language Models for AI vs Human Generated Text detection
    Bahad, Sankalp
    Bhaskar, Yash
    Krishnamurthy, Parameswari
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 918 - 921
  • [20] MALTO at SemEval-2024 Task 6: Leveraging Synthetic Data for LLM Hallucination Detection
    Borra, Federico
    Savelli, Claudio
    Rosso, Giacomo
    Koudounas, Alkis
    Giobergia, Flavio
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1678 - 1684