AlphaIntellect at SemEval-2024 Task 6: Detection of Hallucinations in Generated Text

被引:0
|
作者
Choudhury, Sohan [1 ]
Saha, Priyam [2 ]
Ray, Subharthi [2 ]
Das, Shankha Shubhra [2 ]
Das, Dipankar [2 ]
机构
[1] KIIT, Bhubaneswar, India
[2] Jadavpur Univ, Kolkata, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One major issue in natural language generation (NLG) models is detecting hallucinations (semantically inaccurate outputs). This study investigates a hallucination detection system designed for three distinct NLG tasks: definition modeling, paraphrase generation, and machine translation. The system uses feedforward neural networks for classification and SentenceTransformer models for similarity scores and sentence embeddings. Even though the SemEval-2024 benchmark is showing good results, there is still room for improvement. Promising paths towards improving performance include considering multi-task learning methods, including strategies for handling out-of-domain data and minimizing bias, and investigating sophisticated architectures.
引用
收藏
页码:952 / 958
页数:7
相关论文
共 50 条
  • [1] NootNoot At SemEval-2024 Task 6: Hallucinations and Related Observable Overgeneration Mistakes Detection
    Bahad, Sankalp
    Bhaskar, Yash
    Krishnamurthy, Parameswari
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 964 - 968
  • [2] Team AT at SemEval-2024 Task 8: Machine-Generated Text Detection with Semantic Embeddings
    Wei, Yuchen
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 492 - 496
  • [3] SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection
    Wang, Yuxia
    Mansurov, Jonibek
    Ivanov, Petar
    Su, Jinyan
    Shelmanov, Artem
    Tsvigun, Akim
    Afzal, Osama Mohammed
    Mahmoud, Tarek
    Puccetti, Giovanni
    Arnold, Thomas
    Whitehouse, Chenxi
    Aji, Alham Fikri
    Habash, Nizar
    Gurevych, Iryna
    Nakov, Preslav
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 2057 - 2079
  • [4] CUNLP at SemEval-2024 Task 8: Classify Human and AI Generated Text
    Pranjal, Aggarwal
    Deepanshu, Sachdeva
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1 - 6
  • [5] NewbieML at SemEval-2024 Task 8: Ensemble Approach for Multidomain Machine-Generated Text Detection
    Tran, Bao
    Nhi Tran
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 354 - 360
  • [6] DeepPavlov at SemEval-2024 Task 6: Detection of Hallucinations and Overgeneration Mistakes with an Ensemble of Transformer-based Models
    Maksimov, Ivan
    Konovalov, Vasily
    Glinskii, Andrei
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 274 - 278
  • [7] UMUTeam at SemEval-2024 Task 8: Combining Transformers and Syntax Features for Machine-Generated Text Detection
    Pan, Ronghao
    Antonio Garcia-Diaz, Jose
    Jose Vivancos-Vicente, Pedro
    Valencia-Garcia, Rafael
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 697 - 702
  • [8] SemEval-2024 Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes
    Mickus, Timothee
    Zosa, Elaine
    Vazquez, Raul
    Vahtola, Teemu
    Tiedemann, Jorg
    Segonne, Vincent
    Raganato, Alessandro
    Apidianaki, Marianna
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1979 - 1993
  • [9] Byun at SemEval-2024 Task 6: Text Classification on Hallucinating Text with Simple Data Augmentation
    Byun, Cheolyeon
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 270 - 273
  • [10] TueCICL at SemEval-2024 Task 8: Resource-efficient approaches for machine-generated text detection
    Stuhlinger, Daniel
    Winkler, Aron
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1597 - 1601