An In-Memory-Computing Binary Neural Network Architecture With In-Memory Batch Normalization

被引:0
|
作者
Rege, Prathamesh Prashant [1 ]
Yin, Ming [2 ]
Parihar, Sanjay [3 ]
Versaggi, Joseph [2 ]
Nemawarkar, Shashank [3 ]
机构
[1] Northeastern Univ, Boston, MA 80305 USA
[2] GLOBALFOUNDRIES, Malta, NY 12020 USA
[3] GLOBALFOUNDRIES, Austin, TX 78735 USA
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Accuracy; Neural networks; Batch normalization; Convolutional neural networks; Training; Data models; Voltage control; In-memory computing; SRAM chips; binary neural network; edge device; in-memory computing; process variation; SRAM;
D O I
10.1109/ACCESS.2024.3444481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes an in-memory computing architecture that combines full-precision computation for the first and last layers of a neural network while employing binary weights and input activations for the intermediate layers. This unique approach presents an efficient and effective solution for optimizing neural-network computations, reducing complexity, and enhancing energy efficiency. Notably, multiple architecture-level optimization methods are developed to ensure the binary operations thereby eliminating the need for intricate "digital logic" components external to the memory units. One of the key contributions of this study is in-memory batch normalization, which is implemented to provide good accuracy for CIFAR10 classification applications. Despite the inherent challenges posed by the process variations, the proposed design demonstrated an accuracy of 78%. Furthermore, the SRAM layer in the architecture showed an energy efficiency of 1086 TOPS/W and throughput of 23 TOPS, all packed efficiently within an area of 60 TOPS/mm2. This novel in-memory computing architecture offers a promising solution for next-generation efficient and high-performance deep learning applications.
引用
收藏
页码:190889 / 190896
页数:8
相关论文
共 50 条
  • [21] A MLC STT-MRAM based Computing in-Memory Architec-ture for Binary Neural Network
    Pan, Y.
    Ouyang, P.
    Zhao, Y.
    Kang, W.
    Yin, S.
    Zhang, Y.
    Zhao, W.
    Wei, S.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [22] A Crossbar-Based In-Memory Computing Architecture
    Wang, Xinxin
    Zidan, Mohammed A.
    Lu, Wei D.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) : 4224 - 4232
  • [23] In-Memory Computing Architecture for Efficient Hardware Security
    Ajmi, Hala
    Zayer, Fakhreddine
    Belgacem, Hamdi
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 71 - 76
  • [24] In-Memory Computing Architecture for Efficient Hardware Security
    Ajmi, Hala
    Zayer, Fakhreddine
    Belgacem, Hamdi
    arXiv,
  • [25] Scalable and Programmable Neural Network Inference Accelerator Based on In-Memory Computing
    Jia, Hongyang
    Ozatay, Murat
    Tang, Yinqi
    Valavi, Hossein
    Pathak, Rakshit
    Lee, Jinseok
    Verma, Naveen
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (01) : 198 - 211
  • [26] A Compressed Spiking Neural Network Onto a Memcapacitive In-Memory Computing Array
    Oshio, Reon
    Sugahara, Takuya
    Sawada, Atsushi
    Kimura, Mutsumi
    Zhang, Renyuan
    Nakashima, Yasuhiko
    IEEE MICRO, 2024, 44 (01) : 8 - 16
  • [27] A Parallel Randomized Neural Network on In-memory Cluster Computing for Big Data
    Dai, Tongwu
    Li, Kenli
    Chen, Cen
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [28] Resistive-RAM-Based In-Memory Computing for Neural Network: A Review
    Chen, Weijian
    Qi, Zhi
    Akhtar, Zahid
    Siddique, Kamran
    ELECTRONICS, 2022, 11 (22)
  • [29] Memory Sizing of a Scalable SRAM In-Memory Computing Tile Based Architecture
    Gauchi, R.
    Kooli, M.
    Vivet, P.
    Noel, J. -P.
    Beigne, E.
    Mitra, S.
    Charles, H. -P.
    2019 IFIP/IEEE 27TH INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2019, : 166 - 171
  • [30] Superconducting in-memory computing architecture coupling with memristor synapses for binarized neural networks
    Xu, Zuyu
    Liu, Yu
    Wu, Zuheng
    Zhu, Yunlai
    Wang, Jun
    Yang, Fei
    Dai, Yuehua
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2024, 37 (06):