RECONFIGURABLE INTELLIGENT SURFACE-ASSISTED AERIAL NONTERRESTRIAL NETWORKS An Intelligent Synergy With Deep Reinforcement Learning

被引:0
|
作者
Umer, Muhammad [1 ]
Mohsin, Muhammad Ahmed [2 ]
Kaushik, Aryan [3 ]
Nadeem, Qurrat-Ul-Ain [4 ,5 ]
Nasir, Ali Arshad [6 ]
Hassan, Syed Ali [1 ,7 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad 44000, Pakistan
[2] Stanford Univ, Elect Engn, Stanford, CA 94305 USA
[3] Manchester Metropolitan Univ, Manchester M1 5GD, England
[4] New York Univ NYU Abu Dhabi, Abu Dhabi 129188, U Arab Emirates
[5] Tandon Sch Engn, YU WIRELESS, Brooklyn, NY 11201 USA
[6] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[7] Natl Univ Sci & Technol, Informat Proc & Transmiss Lab, Islamabad 44000, Pakistan
关键词
D O I
10.1109/MVT.2024.3524745
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable intelligent surface (RIS)-assisted aerial non-terrestrial networks (NTNs) offer a promising paradigm for enhancing wireless communications in the era of 6G and beyond. By integrating RIS with aerial platforms such as unmanned aerial vehicles (UAVs) and high-altitude platforms (HAPs), these networks can intelligently control signal propagation, extending coverage, improving capacity, and enhancing link reliability. This article explores the application of deep reinforcement learning (DRL) as a powerful tool for optimizing RIS-assisted aerial NTNs. We focus on hybrid proximal policy optimization (H-PPO), a robust DRL algorithm well-suited for handling the complex, hybrid action spaces inherent in these networks. Through a case study of an aerial RIS (ARIS)-aided coordinated multi-point non-orthogonal multiple access (CoMPNOMA) network, we demonstrate how H-PPO can effectively optimize the system and maximize the sum rate while adhering to system constraints. Finally, we discuss key challenges and promising research directions for DRL-powered RIS-assisted aerial NTNs, highlighting their potential to transform nextgeneration wireless networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement Learning
    Huang, Chongwen
    Mo, Ronghong
    Yuen, Chau
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (08) : 1839 - 1850
  • [22] Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted D2D Communications
    Nguyen, Khoi Khac
    Masaracchia, Antonino
    Yin, Cheng
    EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2023, 10 (01)
  • [23] Aerial Reconfigurable Intelligent Surface-Assisted Channel Modeling Incorporating the Effect of UAV Fluctuations
    Wang, Zili
    Bian, Ji
    Wang, Cheng-Xiang
    Liu, Yu
    Tian, Jie
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (07) : 1599 - 1603
  • [24] Aerial Reconfigurable Intelligent Surface-Assisted LPWANs for IoT: A Cross-Layer Analysis
    Khoshafa, Majid H.
    Gadallah, Yasser
    Ngatched, Telex M. N.
    Ahmed, Mohamed H.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (10) : 2912 - 2916
  • [25] Reconfigurable Intelligent Surface-Assisted Spatial Scattering Modulation
    Zhu, Xusheng
    Yuan, Lei
    Kim, Kyeong Jin
    Li, Qingqing
    Zhang, Jiliang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 192 - 196
  • [26] Average Secrecy Capacity of the Reconfigurable Intelligent Surface-Assisted Integrated Satellite Unmanned Aerial Vehicle Relay Networks
    Li, Ping
    Guo, Kefeng
    Zhou, Feng
    Wang, Xueling
    Huang, Yuzhen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (02): : 1849 - 1864
  • [27] Reconfigurable Intelligent Surface-Assisted Passive Beamforming Attack
    Niu, Hong
    Xiao, Yue
    Lei, Xia
    Dan, Lilin
    Xiang, Wei
    Yuen, Chau
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 8236 - 8247
  • [28] Reconfigurable Intelligent Surface-Assisted Space Shift Keying
    Canbilen, Ayse E.
    Basar, Ertugrul
    Ikki, Salama S.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (09) : 1495 - 1499
  • [29] Fine-Grained Analysis of Reconfigurable Intelligent Surface-Assisted mmWave Networks
    Yang, Le
    Li, Xiao
    Jin, Shi
    Matthaiou, Michail
    Zheng, Fu-Chun
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (09) : 6277 - 6294
  • [30] Capacity Analysis of Reconfigurable Intelligent Surface-Assisted in Overlay/Underlay Vehicular Networks
    Wu, Guilu
    You, Junkang
    Liu, Haoyu
    Zhao, Xiangshuo
    Chen, Han
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 33481 - 33491