RECONFIGURABLE INTELLIGENT SURFACE-ASSISTED AERIAL NONTERRESTRIAL NETWORKS An Intelligent Synergy With Deep Reinforcement Learning

被引:0
|
作者
Umer, Muhammad [1 ]
Mohsin, Muhammad Ahmed [2 ]
Kaushik, Aryan [3 ]
Nadeem, Qurrat-Ul-Ain [4 ,5 ]
Nasir, Ali Arshad [6 ]
Hassan, Syed Ali [1 ,7 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad 44000, Pakistan
[2] Stanford Univ, Elect Engn, Stanford, CA 94305 USA
[3] Manchester Metropolitan Univ, Manchester M1 5GD, England
[4] New York Univ NYU Abu Dhabi, Abu Dhabi 129188, U Arab Emirates
[5] Tandon Sch Engn, YU WIRELESS, Brooklyn, NY 11201 USA
[6] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
[7] Natl Univ Sci & Technol, Informat Proc & Transmiss Lab, Islamabad 44000, Pakistan
关键词
D O I
10.1109/MVT.2024.3524745
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable intelligent surface (RIS)-assisted aerial non-terrestrial networks (NTNs) offer a promising paradigm for enhancing wireless communications in the era of 6G and beyond. By integrating RIS with aerial platforms such as unmanned aerial vehicles (UAVs) and high-altitude platforms (HAPs), these networks can intelligently control signal propagation, extending coverage, improving capacity, and enhancing link reliability. This article explores the application of deep reinforcement learning (DRL) as a powerful tool for optimizing RIS-assisted aerial NTNs. We focus on hybrid proximal policy optimization (H-PPO), a robust DRL algorithm well-suited for handling the complex, hybrid action spaces inherent in these networks. Through a case study of an aerial RIS (ARIS)-aided coordinated multi-point non-orthogonal multiple access (CoMPNOMA) network, we demonstrate how H-PPO can effectively optimize the system and maximize the sum rate while adhering to system constraints. Finally, we discuss key challenges and promising research directions for DRL-powered RIS-assisted aerial NTNs, highlighting their potential to transform nextgeneration wireless networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Aerial Reconfigurable Intelligent Surface-Assisted Secrecy: A Learning Approach
    Jiang, Tianqi
    Niu, Lirong
    Tang, Xu
    Tang, Xiao
    Zhai, Daosen
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (01) : 18 - 22
  • [2] Aerial Reconfigurable Intelligent Surface-Assisted Secrecy Energy-Efficient Communication Based on Deep Reinforcement Learning
    Zhang, Wenyue
    Zhao, Rui
    Xu, Yichao
    2024 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND WIRELESS OPTICAL COMMUNICATIONS, ICWOC, 2024, : 60 - 65
  • [3] Reconfigurable Intelligent Surface-Assisted Multi-UAV Networks: Efficient Resource Allocation With Deep Reinforcement Learning
    Khoi Khac Nguyen
    Khosravirad, Saeed R.
    da Costa, Daniel Benevides
    Nguyen, Long D.
    Duong, Trung Q.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (03) : 358 - 368
  • [4] Aerial Reconfigurable Intelligent Surface-Assisted Terrestrial Communications
    Gu X.
    Duan W.
    Zhang G.
    Wen M.
    Choi J.
    Ho P.-H.
    IEEE Internet of Things Magazine, 2024, 7 (02): : 54 - 60
  • [5] Reinforcement Learning-based MAC for Reconfigurable Intelligent Surface-Assisted Wireless Sensor Networks
    Ahmed, Faisal
    Shitiri, Ethungshan
    Cho, Ho-Shin
    2022 THIRTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), 2022, : 253 - 255
  • [6] Deep Learning for Secure Transmission in Reconfigurable Intelligent Surface-Assisted Communications
    Fang J.
    Zou X.
    Huang C.
    Yang Z.
    Xu Y.
    Chen X.
    Shi J.
    Shikh-Bahaei M.
    Journal of Communications and Information Networks, 2023, 8 (02) : 122 - 132
  • [7] Reconfigurable Intelligent Surface-assisted Classification of Modulations using Deep Learning
    Lodro, Mir
    Taghvaee, Hamidreza
    Gros, Jean-Baptiste
    Greedy, Steve
    Lerosey, Geofrroy
    Gradoni, Gabriele
    2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [8] Deep Learning-Based Optimization for Reconfigurable Intelligent Surface-Assisted Communications
    Lopez-Lanuza, Guillermo
    Kun Chen-Hu
    Garcia Armada, Ana
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 764 - 769
  • [9] Reconfigurable Intelligent Surface-assisted Networks: Phase Alignment Categories
    Xu, Jiaqi
    Liu, Yuanwei
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [10] Opportunistic Reflection in Reconfigurable Intelligent Surface-Assisted Wireless Networks
    Jiang, Wei
    Schotten, Hans D.
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,