Grape detection in natural environment based on improved YOLOv8 network

被引:0
|
作者
Meng, Junjie [1 ]
Cao, Ziang [1 ]
Guo, Dandan [1 ]
Wang, Yuwei [1 ]
Zhang, Dashan [1 ]
Liu, Bingyou [2 ]
Hou, Wenhui [1 ]
机构
[1] Anhui Agr Univ, Sch Engn, Anhui Prov Engn Lab Intelligent Agr Machinery, Hefei 230036, Anhui, Peoples R China
[2] Anhui Polytech Univ, Key Lab Elect Drive & Control Anhui Prov, Wuhu, Ahhui, Peoples R China
关键词
automatic grape picking; disadvantages-enhance; EMA; grape detection; smart agriculture; YOLOv8; CITRUS-FRUITS;
D O I
10.4081/jae.2024.1594
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In the pursuit of intelligent and efficient grape picking, rapid and precise detection of grape locations serves as the fundamental cornerstone. However, amidst the natural environment, grape detection encounters various interference factors, such as fluctuating light intensity, grape leaf obstructions, and grape overlap, all of which can undermine detection accuracy. To address these challenges, this study proposes a grape detection method leveraging an enhanced YOLOv8 network, wherein the conventional CIoU is replaced with Wise-IoU (WIoU) to augment network precision. Additionally, an efficient multi-scale attention module (EMA) is introduced to heighten the network's focus on grapes. To expedite detection, the original network backbone is substituted with the CloFormer_xxs network. The collected grape images undergo preprocessing to ensure image quality, forming the basis of the dataset. Furthermore, the dataset is augmented using Disadvantages-Enhance (DE), a novel data enhancement mode, thereby enhancing the robustness and generalization of network. The comprehensive comparison and ablation experiments are conducted to demonstrate the advantageous effects of the proposed modules on the network. Subsequently, the improved network's superiority in grape detection is validated through comparative analyses with other networks, showcasing superior accuracy and faster detection speeds. The network achieves a remarkable accuracy of 92.1%, average accuracy of 94.7%, with preprocessing and post-processing times of 15ms and 0.8ms, respectively. Consequently, the enhanced network presented in this study offers a viable solution for facilitating intelligent and efficient grape picking operations.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Helmet detection algorithm based on lightweight improved YOLOv8
    Wang, Maoli
    Qiu, Haitao
    Wang, Jiarui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [22] Blueberry flower detection algorithm based on improved YOLOv8
    Gai, Rongli
    Zhang, Huatian
    Guo, Zhibin
    Kong, Xiangzhou
    Qin, Shan
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 768 - 773
  • [23] Automotive adhesive defect detection based on improved YOLOv8
    Wang, Chunjie
    Sun, Qibo
    Dong, Xiaogang
    Chen, Jia
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2583 - 2595
  • [24] Student Behavior Detection in the Classroom Based on Improved YOLOv8
    Chen, Haiwei
    Zhou, Guohui
    Jiang, Huixin
    SENSORS, 2023, 23 (20)
  • [25] Crack Detection on Road Surfaces Based on Improved YOLOv8
    Wu, Haiyang
    Kong, Lingyun
    Liu, Denghui
    IEEE Access, 2024, 12 : 190850 - 190864
  • [26] POD PEPPER TARGET DETECTION BASED ON IMPROVED YOLOv8
    Shen, Jiayv
    Kong, Qingzhong
    Liu, Yanghao
    Ma, Na
    INMATEH - Agricultural Engineering, 2024, 74 (03): : 273 - 282
  • [27] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544
  • [28] Improved Road Defect Detection Algorithm Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Computer Engineering and Applications, 2024, 60 (17) : 179 - 190
  • [29] An Improved Liver Disease Detection Based on YOLOv8 Algorithm
    Huang, Junjie
    Li, Caihong
    Yan, Fengjun
    Guo, Yuanchun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 1168 - 1179
  • [30] A Universal Tire Detection Method Based on Improved YOLOv8
    Guo, Chi
    Chen, Mingxia
    Wu, Junjie
    Hu, Haipeng
    Huang, Luobing
    Li, Junjie
    IEEE ACCESS, 2024, 12 : 174770 - 174781