Multi-step depth enhancement refine network with multi-view stereo

被引:0
|
作者
Ding, Yuxuan [1 ]
Li, Kefeng [1 ]
Zhang, Guangyuan [1 ]
Zhu, Zhenfang [1 ]
Wang, Peng [1 ]
Wang, Zhenfei [2 ]
Fu, Chen [1 ]
Li, Guangchen [1 ]
Pan, Ke [1 ]
机构
[1] Shandong Jiaotong Univ, Coll Informat Sci & Elect Engn, Jinan, Shandong, Peoples R China
[2] Shandong Zhengyuan Yeda Environm Technol Co Ltd, Jinan, Shandong, Peoples R China
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
D O I
10.1371/journal.pone.0314418
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces an innovative multi-view stereo matching network-the Multi-Step Depth Enhancement Refine Network (MSDER-MVS), aimed at improving the accuracy and computational efficiency of high-resolution 3D reconstruction. The MSDER-MVS network leverages the potent capabilities of modern deep learning in conjunction with the geometric intuition of traditional 3D reconstruction techniques, with a particular focus on optimizing the quality of the depth map and the efficiency of the reconstruction process.Our key innovations include a dual-branch fusion structure and a Feature Pyramid Network (FPN) to effectively extract and integrate multi-scale features. With this approach, we construct depth maps progressively from coarse to fine, continuously improving depth prediction accuracy at each refinement stage. For cost volume construction, we employ a variance-based metric to integrate information from multiple perspectives, optimizing the consistency of the estimates. Moreover, we introduce a differentiable depth optimization process that iteratively enhances the quality of depth estimation using residuals and the Jacobian matrix, without the need for additional learnable parameters. This innovation significantly increases the network's convergence rate and the fineness of depth prediction.Extensive experiments on the standard DTU dataset (Aanas H, 2016) show that MSDER-MVS surpasses current advanced methods in accuracy, completeness, and overall performance metrics. Particularly in scenarios rich in detail, our method more precisely recovers surface details and textures, demonstrating its effectiveness and superiority for practical applications.Overall, the MSDER-MVS network offers a robust solution for precise and efficient 3D scene reconstruction. Looking forward, we aim to extend this approach to more complex environments and larger-scale datasets, further enhancing the model's generalization and real-time processing capabilities, and promoting the widespread deployment of multi-view stereo matching technology in practical applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry
    Bae, Gwangbin
    Budvytis, Ignas
    Cipolla, Roberto
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2832 - 2841
  • [42] Multi-distribution fitting for multi-view stereo
    Chen, Jinguang
    Yu, Zonghua
    Ma, Lili
    Zhang, Kaibing
    MACHINE VISION AND APPLICATIONS, 2023, 34 (05)
  • [43] Multi-distribution fitting for multi-view stereo
    Jinguang Chen
    Zonghua Yu
    Lili Ma
    Kaibing Zhang
    Machine Vision and Applications, 2023, 34
  • [44] Deformable convolutions in multi-view stereo
    Masson, Juliano Emir Nunes
    Petry, Marcelo Roberto
    Coutinho, Daniel Ferreira
    Honorio, Leonardo de Mello
    IMAGE AND VISION COMPUTING, 2022, 118
  • [45] Probabilistic visibility for multi-view stereo
    Hernandez, Carlos
    Vogiatzis, George
    Cipolla, Roberto
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1704 - 1711
  • [46] Multi-view stereo beyond Lambert
    Jin, HL
    Soatto, S
    Yezzi, AJ
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2003, : 171 - 178
  • [47] Mobile robotic multi-view stereo
    Kumar, Suryansh
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2025, 223 : 15 - 27
  • [48] Multi-View Photometric Stereo Revisited
    Kaya, Berk
    Kumar, Suryansh
    Oliveira, Carlos
    Ferrari, Vittorio
    Van Gool, Luc
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3125 - 3134
  • [49] Progressive Prioritized Multi-view Stereo
    Locher, Alex
    Perdoch, Michal
    Gool, Luc Van
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3244 - 3252
  • [50] Occluding Contours for Multi-View Stereo
    Shan, Qi
    Curless, Brian
    Furukawa, Yasutaka
    Hernandez, Carlos
    Seitz, Steven M.
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 4002 - 4009