Multi-step depth enhancement refine network with multi-view stereo

被引:0
|
作者
Ding, Yuxuan [1 ]
Li, Kefeng [1 ]
Zhang, Guangyuan [1 ]
Zhu, Zhenfang [1 ]
Wang, Peng [1 ]
Wang, Zhenfei [2 ]
Fu, Chen [1 ]
Li, Guangchen [1 ]
Pan, Ke [1 ]
机构
[1] Shandong Jiaotong Univ, Coll Informat Sci & Elect Engn, Jinan, Shandong, Peoples R China
[2] Shandong Zhengyuan Yeda Environm Technol Co Ltd, Jinan, Shandong, Peoples R China
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
D O I
10.1371/journal.pone.0314418
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper introduces an innovative multi-view stereo matching network-the Multi-Step Depth Enhancement Refine Network (MSDER-MVS), aimed at improving the accuracy and computational efficiency of high-resolution 3D reconstruction. The MSDER-MVS network leverages the potent capabilities of modern deep learning in conjunction with the geometric intuition of traditional 3D reconstruction techniques, with a particular focus on optimizing the quality of the depth map and the efficiency of the reconstruction process.Our key innovations include a dual-branch fusion structure and a Feature Pyramid Network (FPN) to effectively extract and integrate multi-scale features. With this approach, we construct depth maps progressively from coarse to fine, continuously improving depth prediction accuracy at each refinement stage. For cost volume construction, we employ a variance-based metric to integrate information from multiple perspectives, optimizing the consistency of the estimates. Moreover, we introduce a differentiable depth optimization process that iteratively enhances the quality of depth estimation using residuals and the Jacobian matrix, without the need for additional learnable parameters. This innovation significantly increases the network's convergence rate and the fineness of depth prediction.Extensive experiments on the standard DTU dataset (Aanas H, 2016) show that MSDER-MVS surpasses current advanced methods in accuracy, completeness, and overall performance metrics. Particularly in scenarios rich in detail, our method more precisely recovers surface details and textures, demonstrating its effectiveness and superiority for practical applications.Overall, the MSDER-MVS network offers a robust solution for precise and efficient 3D scene reconstruction. Looking forward, we aim to extend this approach to more complex environments and larger-scale datasets, further enhancing the model's generalization and real-time processing capabilities, and promoting the widespread deployment of multi-view stereo matching technology in practical applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Uncertainty Guided Multi-View Stereo Network for Depth Estimation
    Su, Wanjuan
    Xu, Qingshan
    Tao, Wenbing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7796 - 7808
  • [2] Unsupervised multi-view stereo network based on multi-stage depth estimation
    Qi, Shuai
    Sang, Xinzhu
    Yan, Binbin
    Wang, Peng
    Chen, Duo
    Wang, Huachun
    Ye, Xiaoqian
    IMAGE AND VISION COMPUTING, 2022, 122
  • [3] Continuous Depth Estimation for Multi-view Stereo
    Liu, Yebin
    Cao, Xun
    Dai, Qionghai
    Xu, Wenli
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2121 - 2128
  • [4] Multi-View Guided Multi-View Stereo
    Poggi, Matteo
    Conti, Andrea
    Mattoccia, Stefano
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8391 - 8398
  • [5] Learning Depth for Multi-View Stereo with Adversarial Training
    Wang, Liang
    Fan, Deqiao
    Li, Jianshu
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1674 - 1679
  • [6] Adaptive depth estimation for pyramid multi-view stereo
    Liao, Jie
    Fu, Yanping
    Yan, Qingan
    Luo, Fei
    Xiao, Chunxia
    COMPUTERS & GRAPHICS-UK, 2021, 97 : 268 - 278
  • [7] MVSNet: Depth Inference for Unstructured Multi-view Stereo
    Yao, Yao
    Luo, Zixin
    Li, Shiwei
    Fang, Tian
    Quan, Long
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 785 - 801
  • [8] REVISED DEPTH MAP ESTIMATION FOR MULTI-VIEW STEREO
    Yao, Yao
    Zhu, Hao
    Nie, Yongming
    Ji, Xiaoli
    Cao, Xun
    2014 INTERNATIONAL CONFERENCE ON 3D IMAGING (IC3D), 2014,
  • [9] Multi-view stereo network with point attention
    Zhao, Rong
    Gu, Zhuoer
    Han, Xie
    He, Ligang
    Sun, Fusheng
    Jiao, Shichao
    APPLIED INTELLIGENCE, 2023, 53 (22) : 26622 - 26636
  • [10] Multi-view stereo network with point attention
    Rong Zhao
    Zhuoer Gu
    Xie Han
    Ligang He
    Fusheng Sun
    Shichao Jiao
    Applied Intelligence, 2023, 53 : 26622 - 26636