Competing Dual-Network with Pseudo-Supervision Rectification for Semi-Supervised Medical Image Segmentation

被引:0
|
作者
Zhou, Ping [1 ]
Chen, Feng [1 ]
Li, Bingwen [1 ]
Tang, Zhen [1 ]
Liu, Heng [1 ,2 ]
Du, Meiyu [3 ]
机构
[1] Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan 243032, Peoples R China
[2] Heifei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[3] Xian Med Univ, Affiliated Hosp 3, Xian 710021, Peoples R China
关键词
Semi-Supervised Learning; Medical Image Segmentation; Competing Dual-Network; Rectified Pseudo-Supervision; Data Augmentation;
D O I
10.1007/978-981-97-8496-7_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised medical image segmentation utilizes a large number of unlabeled images in combination with a limited number of labeled images for model training and optimization, significantly reducing the reliance on large-scale labeled images. However, due to the model's cognitive biases, distribution gap between labeled and unlabeled images, and potential noise in the pseudo-supervision process, learning robust representations from a large number of unlabeled images is still a challenging task. To address these issues, we propose a new framework of Competing Dual-Network with Pseudo-Supervision Rectification (CDPR), which integrates the bidirectional copy-paste mechanism for single image pair and the pseudo-supervision rectification strategy into the architecture of the competing dual-network. Through the competing dual-network, we encourage two segmentation networks to engage in mutual learning and competition, which contributes to break the model's cognitive biases. We utilize the bidirectional copy-paste technique for single image pair to establish a consistent learning strategy for both labeled and unlabeled data, thereby better aligning the data distribution. Finally, by optimizing the pseudo-supervised loss, the negative impact of potential noise on the model's segmentation performance during the pseudo-supervision stage is effectively alleviated. Experimental results on the benchmark dataset demonstrate that our method achieves outstanding performance compared to several state-of-the-art methods.
引用
收藏
页码:545 / 559
页数:15
相关论文
共 50 条
  • [41] A novel multi-task semi-supervised medical image segmentation method based on multi-branch cross pseudo supervision
    Xiao, Yueyue
    Chen, Chunxiao
    Fu, Xue
    Wang, Liang
    Yu, Jie
    Zou, Yuan
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30359 - 30383
  • [42] Uncertainty-Inspired Credible Pseudo-Labeling in Semi-Supervised Medical Image Segmentation
    Zheng, Zhiyu
    Lv, Liang
    Ni, Bo
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV, 2025, 15044 : 90 - 104
  • [43] Semi-Supervised Dual Stream Segmentation Network for Fundus Lesion Segmentation
    Xiang, Dehui
    Yan, Shenshen
    Guan, Ying
    Cai, Mulin
    Li, Zheqing
    Liu, Haiyun
    Chen, Xinjian
    Tian, Bei
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (03) : 713 - 725
  • [44] Dual uncertainty-guided multi-model pseudo-label learning for semi-supervised medical image segmentation
    Qiu Z.
    Gan W.
    Yang Z.
    Zhou R.
    Gan H.
    Mathematical Biosciences and Engineering, 2024, 21 (02) : 2212 - 2232
  • [45] Pair Shuffle Consistency for Semi-supervised Medical Image Segmentation
    He, Jianjun
    Cai, Chenyu
    Li, Qiong
    Ma, Andy J.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 489 - 499
  • [46] Adaptive Bidirectional Displacement for Semi-Supervised Medical Image Segmentation
    Chi, Hanyang
    Pang, Jian
    Zhang, Bingfeng
    Liu, Weifeng
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 4070 - 4080
  • [47] Alternate Diverse Teaching for Semi-supervised Medical Image Segmentation
    Zhao, Zhen
    Wang, Zicheng
    Wang, Longyue
    Yu, Dian
    Yuan, Yixuan
    Zhou, Luping
    COMPUTER VISION - ECCV 2024, PT V, 2025, 15063 : 227 - 243
  • [48] Deep Mutual Distillation for Semi-supervised Medical Image Segmentation
    Xie, Yushan
    Yin, Yuejia
    Li, Qingli
    Wang, Yan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 540 - 550
  • [49] Meta semi-supervised medical image segmentation with label hierarchy
    Hai Xu
    Hongtao Xie
    Qingfeng Tan
    Yongdong Zhang
    Health Information Science and Systems, 11
  • [50] Linear semantic transformation for semi-supervised medical image segmentation
    Chen C.
    Chen Y.
    Li X.
    Ning H.
    Xiao R.
    Computers in Biology and Medicine, 2024, 173