Performance prediction of vacuum membrane distillation system based on multi-layer perceptron neural network

被引:0
|
作者
Si, Zetian [1 ,2 ]
Li, Zhuohao [1 ]
Li, Ke [1 ]
Li, Zhiwei [1 ]
Wang, Gang [3 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
[2] Minist Educ, Engn Res Ctr Water Resource Comprehens Utilizat Co, Lanzhou 730070, Gansu, Peoples R China
[3] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
关键词
Evaporation capacity; Vacuum membrane distillation; Multi layer perceptron; Goodness of fit; Relative error; DESALINATION;
D O I
10.1016/j.desal.2025.118593
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Evaporation capacity is an important evaluation indicator for a vacuum membrane distillation (VMD) system. Accurate and efficient prediction of evaporation capacity has always been a difficult problem for the VMD system. This paper developed a multi-layer perceptron (MLP) neural network model, to effectively predict the evaporation capacity of the VMD system. With feed concentration, feed temperature, feed flow rate, vacuum side pressure and membrane area as input variables and evaporation capacity as output variable, 370 experimental data were divided into training set and testing set in a 4:1 ratio. The prediction performance was analyzed by comparing with convolutional neural network (CNN), long short-term memory network (LSTM) and gated recurrent unit (GRU). The results showed that the goodness of fit (R-2) in the training set and testing set for MLP, CNN, LSTM and GRU were 0.99, 0.95, 0.94, 0.95 and 0.98, 0.94, 0.93, 0.94 respectively, four models could effectively predict the evaporation capacity due to the good coincidence between prediction and real values under an acceptable error level. Moreover, the sample numbers with relative error (<5 %) between prediction and real values accounted for 56.5 %, 43.8 %, 23.5 % and 25.4 % of the total samples in MLP, CNN, LSTM and GRU. Obviously, MLP exhibited highest accuracy and stability than that of CNN, LSTM and GRU for the current VMD system.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Impact of Input Feature Selection on Groundwater Level Prediction From a Multi-Layer Perceptron Neural Network
    Sahu, Reetik Kumar
    Muller, Juliane
    Park, Jangho
    Varadharajan, Charuleka
    Arora, Bhavna
    Faybishenko, Boris
    Agarwal, Deborah
    FRONTIERS IN WATER, 2020, 2
  • [32] MULTI-LAYER PERCEPTRON BASED TRANSFER PASSENGER FLOW PREDICTION IN ISTANBUL TRANSPORTATION SYSTEM
    Utku A.
    Kaya S.K.
    Decision Making: Applications in Management and Engineering, 2022, 5 (01): : 208 - 224
  • [33] Intrusion Detection System Based on Multi-Layer Perceptron Neural Networks and Decision Tree
    Esmaily, Jamal
    Moradinezhad, Reza
    Ghasemi, Jamal
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [34] Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms
    Joo, Yoonji
    Namgung, Eun
    Jeong, Hyeonseok
    Kang, Ilhyang
    Kim, Jinsol
    Oh, Sohyun
    Lyoo, In Kyoon
    Yoon, Sujung
    Hwang, Jaeuk
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [35] Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms
    Yoonji Joo
    Eun Namgung
    Hyeonseok Jeong
    Ilhyang Kang
    Jinsol Kim
    Sohyun Oh
    In Kyoon Lyoo
    Sujung Yoon
    Jaeuk Hwang
    Scientific Reports, 13
  • [36] Stall flutter prediction based on multi-layer GRU neural network
    Yuting DAI
    Haoran RONG
    You WU
    Chao YANG
    Yuntao XU
    Chinese Journal of Aeronautics, 2023, 36 (01) : 75 - 90
  • [37] Stall flutter prediction based on multi-layer GRU neural network
    Yuting DAI
    Haoran RONG
    You WU
    Chao YANG
    Yuntao XU
    Chinese Journal of Aeronautics , 2023, (01) : 75 - 90
  • [38] Secure Communication Using Multi-Layer Perceptron Neural Network and the Adaptive-Network-Based Fuzzy Inference System in Wireless Network
    Kamala J.
    Nawaz G.M.K.
    SN Computer Science, 4 (6)
  • [39] Stall flutter prediction based on multi-layer GRU neural network
    Dai, Yuting
    Rong, Haoran
    Wu, You
    Yang, Chao
    Xu, Yuntao
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (01) : 75 - 90
  • [40] Glaucoma detection using novel perceptron based convolutional multi-layer neural network classification
    Mansour, Romany F.
    Al-Marghilnai, Abdulsamad
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2021, 32 (04) : 1217 - 1235