Scalar spectral functions from the spectral functional renormalization group

被引:0
|
作者
Horak, Jan [1 ]
Ihssen, Friederike [1 ]
Pawlowski, Jan M. [1 ,2 ]
Wessely, Jonas [1 ]
Wink, Nicolas [3 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[2] ExtreMe Matter Inst EMMI, GSI, Planckstr 1, D-64291 Darmstadt, Germany
[3] Tech Univ Darmstadt, Inst Kernphys Theoriezentrum, D-64289 Darmstadt, Germany
关键词
CALLAN-SYMANZIK EQUATION; STATES;
D O I
10.1103/PhysRevD.110.056009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute spectral functions in a scalar 4-theory in three spacetime dimensions via the spectral functional renormalization group. This approach allows for the direct, manifestly Lorentz covariant computation of correlation functions in Minkowski spacetime, including a physical on-shell renormalization. We present numerical results for the spectral functions of the two- and four-point correlation functions for different values of the coupling parameter. These results agree very well with those obtained from another functional real-time approach, the spectral Dyson-Schwinger equation.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] SPECTRAL APPROXIMATION OF DISCRETE SCALAR AND VECTOR FUNCTIONS ON THE SPHERE
    SWARZTRAUBER, PN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (06) : 934 - 949
  • [32] Scalar correlation functions in de Sitter space from the stochastic spectral expansion
    Markkanen, Tommi
    Rajantie, Arttu
    Stopyra, Stephen
    Tenkanen, Tommi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (08):
  • [33] Spectral and Functional Inequalities for Antisymmetric Functions
    A. A. Laptev
    I. A. Shcherbakov
    Russian Mathematics, 2025, 69 (2) : 77 - 82
  • [34] Spectral functions for single- and multi-impurity models using density matrix renormalization group
    Peters, Robert
    PHYSICAL REVIEW B, 2011, 84 (07):
  • [35] Adaptive broadening to improve spectral resolution in the numerical renormalization group
    Lee, Seung-Sup B.
    Weichselbaum, Andreas
    PHYSICAL REVIEW B, 2016, 94 (23)
  • [36] Renormalization group analysis of spectral problems in quantum field theory
    Bach, V
    Frohlich, J
    Sigal, IM
    ADVANCES IN MATHEMATICS, 1998, 137 (02) : 205 - 298
  • [37] Rigorous Wilsonian renormalization group for impurity models with a spectral gap
    Zalom, Peter
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [38] SPECTRAL FORMS AND RENORMALIZATION GROUP-EQUATIONS OF THE SCHWINGER MODEL
    YILDIZ, A
    PHYSICA A, 1979, 96 (1-2): : 341 - 349
  • [39] Real time correlation functions and the functional renormalization group
    Pawlowski, Jan M.
    Strodthoff, Nils
    PHYSICAL REVIEW D, 2015, 92 (09):
  • [40] Four Loop Scalar φ4 Theory Using the Functional Renormalization Group
    Carrington, Margaret E.
    Phillips, Christopher D.
    UNIVERSE, 2019, 5 (01):