Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks

被引:0
|
作者
Yun, Juyoung [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, New York, NY 11794 USA
关键词
Neural Networks; Optimization; Neural Pruning;
D O I
10.1109/IJCNN60899.2024.10650301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research embarks on pioneering the integration of gradient sampling optimization techniques, particularly StochGradAdam, into the pruning process of neural networks. Our main objective is to address the significant challenge of maintaining accuracy in pruned neural models, critical in resource-constrained scenarios. Through extensive experimentation, we demonstrate that gradient sampling significantly preserves accuracy during and after the pruning process compared to traditional optimization methods. Our study highlights the pivotal role of gradient sampling in robust learning and maintaining crucial information post substantial model simplification. The results across CIFAR-10 datasets and residual neural architectures validate the versatility and effectiveness of our approach. This work presents a promising direction for developing efficient neural networks without compromising performance, even in environments with limited computational resources.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Learning dynamics of gradient descent optimization in deep neural networks
    Wu, Wei
    Jing, Xiaoyuan
    Du, Wencai
    Chen, Guoliang
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (05)
  • [42] Heterogeneous gradient computing optimization for scalable deep neural networks
    Sergio Moreno-Álvarez
    Mercedes E. Paoletti
    Juan A. Rico-Gallego
    Juan M. Haut
    The Journal of Supercomputing, 2022, 78 : 13455 - 13469
  • [43] Generalized gradient projection neural networks for nonsmooth optimization problems
    Li GuoCheng
    Song ShiJi
    Wu Cheng
    SCIENCE CHINA-INFORMATION SCIENCES, 2010, 53 (05) : 990 - 1005
  • [44] Adaptive Stochastic Conjugate Gradient Optimization for Backpropagation Neural Networks
    Hashem, Ibrahim Abaker Targio
    Alaba, Fadele Ayotunde
    Jumare, Muhammad Haruna
    Ibrahim, Ashraf Osman
    Abulfaraj, Anas Waleed
    IEEE ACCESS, 2024, 12 : 33757 - 33768
  • [45] Heterogeneous gradient computing optimization for scalable deep neural networks
    Moreno-Alvarez, Sergio
    Paoletti, Mercedes E.
    Rico-Gallego, Juan A.
    Haut, Juan M.
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (11): : 13455 - 13469
  • [46] Learning dynamics of gradient descent optimization in deep neural networks
    Wei Wu
    Xiaoyuan Jing
    Wencai Du
    Guoliang Chen
    Science China Information Sciences, 2021, 64
  • [47] Generalized gradient projection neural networks for nonsmooth optimization problems
    LI GuoCheng 1
    2 Department of Automation
    Science China(Information Sciences), 2010, 53 (05) : 990 - 1005
  • [48] Learning dynamics of gradient descent optimization in deep neural networks
    Wei WU
    Xiaoyuan JING
    Wencai DU
    Guoliang CHEN
    ScienceChina(InformationSciences), 2021, 64 (05) : 17 - 31
  • [49] Generalized gradient projection neural networks for nonsmooth optimization problems
    GuoCheng Li
    ShiJi Song
    Cheng Wu
    Science China Information Sciences, 2010, 53 : 990 - 1005
  • [50] Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks
    Cui, Xiaodong
    Zhang, Wei
    Tuske, Zoltan
    Picheny, Michael
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31